簡易檢索 / 詳目顯示

研究生: 林子祺
Lin, , Tzu-Chi
論文名稱: 後修飾鑭系金屬離子於二維金屬有機骨架並應用於重水的螢光感測
Post-Synthetic Modification of Lanthanide Ions on a Two-Dimensional Metal–Organic Framework for Ratiometric Photoluminescence Detection of D2O
指導教授: 龔仲偉
Kung, Chung-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 109
中文關鍵詞: 二維鋯基金屬有機骨架鑭系金屬光致發光感測
外文關鍵詞: two-dimensional zirconium-based metal–organic framework, lanthanide, photoluminescence, optical sensor
相關次數: 點閱:6下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬有機骨架(Metal-organic frameworks, MOFs)是一系列由金屬節點與有機連器所組成的奈米孔洞材料,具有極高比表面積、結構可調性與良好的後修飾潛力。相較於傳統孔洞材料,MOFs在單位體積中含有大量且高度分散的活性位點,使其廣泛應用於催化、感測、分離與儲存等。其中,鋯基金屬有機骨架(Zr-MOFs),其優異的水穩定性與結構多樣性,更適合用於水相中的各類反應與感測,成為近年來熱門研究與應用的材料之一。本研究以二維鋯基金屬有機骨架—ZrBTB(BTB = 1,3,5-tri(4-carboxyphenyl)benzene)作為平台,透過後修飾方式在Zr6節點上同時安裝不同比例的鑭系金屬—鋱(Tb3+)與銪(Eu3+)離子,並系統性探討含不同Eu/Tb比例之2D Zr-MOF的結晶性、形貌、孔洞性及光致發光特性,並進一步應用於水相中重水(D2O)的感測。
    材料的發光機制主要是藉由BTB連接器吸收激發光後,將能量傳遞至Tb,再進一步由Tb將能量轉移至Eu,當材料中含有少量Eu而周圍有大量Tb時,可以得到最強的Eu發光強度,且此發光增強現象並無法在Tb-ZrBTB與Eu-ZrBTB以相同比例的物理混合物中觀察到。透過螢光量子效率(PLQY)的測定,也證實Tb可作為BTB與Eu之間能量傳遞的中間者,進而促進Eu的放光增強。最後,本文進一步將具可調性發光性質的材料應用於重水的螢光感測,以BTB的放光作為內部參考因子,而Eu的放光作為感測訊號,使得最佳材料Eu-Tb-ZrBTB(1:10)在感測表現上優於單金屬後修飾的Tb-ZrBTB、Eu-ZrBTB及兩者的物理混合物。

    Metal–organic frameworks (MOFs) are composed of metal ions and organic linkers. With unique properties such as high structural tunability, regular and interconnected porosity, and adjustable chemical functionality, MOFs have been considered appealing nanoporous materials for a range of applications such as sensing, gas adsorption, separation, and catalysis. In this work, a two-dimensional zirconium-based metal–organic framework (2D Zr-MOF), ZrBTB (BTB = 1,3,5-tri(4- carboxyphenyl)benzene), is used as a platform to simultaneously immobilize terbium ions and europium ions with tunable ratios on its hexa-zirconium nodes by a post-synthetic modification. The crystallinity, morphology, porosity and photoluminescence (PL) properties of the obtained 2D Zr-MOFs with various europium-to-terbium ratios are investigated. With the energy transfer from the excited BTB linker to the installed terbium ions and the energy transfer from terbium ions to europium ions, a low loading of immobilized europium ions and a high loading of surrounding terbium ions in the 2D Zr-MOF result in the optimal PL emission intensities of europium; this phenomenon is not observable for the physical mixture of both terbium-installed ZrBTB and europium-installed ZrBTB. The role of installed terbium ions as efficient mediators for the energy transfer from the excited BTB linker to the installed europium ion is confirmed by quantifying PL quantum yields. As a demonstration, these materials with modulable PL characteristics are applied for the ratiometric detection of D2O in water, with the use of the stable emission from the BTB linker as the reference. With the strong emission of immobilized europium ions and the good dispersity in aqueous solutions, the optimal bimetal-installed ZrBTB, Eu-Tb-ZrBTB(1:10), can achieve the sensing performance outperforming those of the terbium-installed ZrBTB, europium-installed ZrBTB and the physical mixture of both.

    中文摘要 i Extend Abstract ii 致謝 xi 目錄 xiii 表目錄 xvi 圖目錄 xvii 第一章 緒論 1 1-1 光致發光感測介紹 1 1-1-1 光致發光原理 1 1-1-2 分子間交互作用對螢光的影響 5 1-1-3 發色團的特徵性質— 生命週期(Lifetime)與量子效率(Quantum yield) 8 1-1-4 光致發光感測 9 1-1-5 鑭系金屬(Lanthanide, Ln)的發光特性 14 1-2 金屬有機骨架 16 1-2-1 金屬有機骨架介紹 16 1-2-2 發光金屬有機骨架 18 1-2-3 水穩定金屬有機骨架 20 1-2-4 二維鋯基金屬有機骨架(2D Zr-based MOFs) 22 1-2-5 光致發光重水(D2O)感測 23 1-3 研究動機 26 第二章 實驗方法與儀器介紹 29 2-1 實驗藥品與儀器介紹 29 2-1-1 實驗藥品 29 2-1-2 實驗儀器 30 2-2 實驗流程 31 2-2-1 二維金屬有機骨架Zr-BTB之合成 31 2-2-2 後修飾鑭系金屬於Zr-BTB 32 2-2-3 Eu-ZrBTB與Tb-ZrBTB之物理混合 34 2-2-4 光致發光(Photoluminescence, PL)實驗 34 2-2-5 光致發光量子效率(Photoluminescence Quantum Yield, PLQY)實驗 35 2-2-6 感應耦合電漿光學發射光譜樣品製備 36 2-2-7 X射線光電子能譜儀樣品製備 36 第三章 結果與討論 38 3-1 材料鑑定 38 3-1-1 粉末X射線繞射圖譜(Powder X-ray diffraction patterns, PXRD patterns) 38 3-1-2 穿透式電子顯微鏡圖(Transmission electron microscopic images, TEM images) 39 3-1-3 應耦合電漿光學發射光譜(Inductively coupled plasma-optical emission spectrometry, ICP-OES)分析 43 3-1-4 氮氣吸脫附曲線(Nitrogen adsorption-desorption isotherms) 45 3-1-5 X 射線光電子能譜(X-ray photoelectron spectroscopy, XPS) 46 3-2 光學性質 49 3-2-1 固體材料的光致發光光譜(Photoluminescence spectra, PL spectra) 49 3-2-2 光致發光量子效率(Photoluminescence quantum yield, PLQY) 54 3-2-3 MOF懸浮液的光致發光光譜(Photoluminescence spectra, PL spectra) 55 3-2-4 水穩定性測試 57 3-2-5 D2O感測 59 第四章 結論 65 第五章 未來展望與建議 67 參考文獻 68 附錄: 個人簡歷表 87

    [1] M. Chern, J. C. Kays, S. Bhuckory and A. M. Dennis, Sensing with photoluminescent semiconductor quantum dots, Methods and Applications in Fluorescence, 7, 012005, 2019.
    [2] A. P. Demchenko and A. P. Demchenko, Fluorescence detection techniques, Introduction to Fluorescence Sensing, 69-132, 2015.
    [3] A. P. Demchenko and A. P. Demchenko, Molecular-size fluorescence emitters, Introduction to Fluorescence Sensing, 133-202, 2015.
    [4] Z. Liu, W. He and Z. Guo, Metal coordination in photoluminescent sensing, Chemical Society Reviews, 42, 1568-1600, 2013.
    [5] B. Valeur and J.-C. Brochon, New trends in fluorescence spectroscopy: applications to chemical and life sciences, Vol. 1, Springer Science & Business Media, 2012.
    [6] A. J. Gomes, C. N. Lunardi, F. S. Rocha and G. S. Patience, Experimental methods in chemical engineering: Fluorescence emission spectroscopy, The Canadian Journal of Chemical Engineering, 97, 2168-2175, 2019.
    [7] B. Valeur and M. N. Berberan-Santos, Molecular fluorescence: principles and applications, John Wiley & Sons, 2013.
    [8] J. R. Lakowicz, Principles of fluorescence spectroscopy, Springer, 2006.
    [9] C. R. Ronda, Luminescence: from theory to applications, John Wiley & Sons, 2007.
    [10] W. P. Lustig, S. Mukherjee, N. D. Rudd, A. V. Desai, J. Li and S. K. Ghosh, Metal–organic frameworks: functional luminescent and photonic materials for sensing applications, Chemical Society Reviews, 46, 3242-3285, 2017.
    [11] J. Birks, Fluorescence quantum yield measurements, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry, 80, 389, 1976.
    [12] C. M. Marian, Spin–orbit coupling and intersystem crossing in molecules, Wiley Interdisciplinary Reviews: Computational Molecular Science, 2, 187-203, 2012.
    [13] J. Wu, W. Liu, J. Ge, H. Zhang and P. Wang, New sensing mechanisms for design of fluorescent chemosensors emerging in recent years, Chemical Society Reviews, 40, 3483-3495, 2011.
    [14] X. Chen, D. Peng, Q. Ju and F. Wang, Photon upconversion in core–shell nanoparticles, Chemical Society Reviews, 44, 1318-1330, 2015.
    [15] H. Ishida, S. Tobita, Y. Hasegawa, R. Katoh and K. Nozaki, Recent advances in instrumentation for absolute emission quantum yield measurements, Coordination Chemistry Reviews, 254, 2449-2458, 2010.
    [16] M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmuller and U. Resch-Genger, Determination of the fluorescence quantum yield of quantum dots: suitable procedures and achievable uncertainties, Analytical Chemistry, 81, 6285-6294, 2009.
    [17] M. Y. Berezin and S. Achilefu, Fluorescence lifetime measurements and biological imaging, Chemical reviews, 110, 2641-2684, 2010.
    [18] X. Chen, S. Shen, L. Guo and S. S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chemical Reviews, 110, 6503-6570, 2010.
    [19] H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke and Y. Urano, New strategies for fluorescent probe design in medical diagnostic imaging, Chemical Reviews, 110, 2620-2640, 2010.
    [20] D. Wu, A. C. Sedgwick, T. Gunnlaugsson, E. U. Akkaya, J. Yoon and T. D. James, Fluorescent chemosensors: the past, present and future, Chemical Society Reviews, 46, 7105-7123, 2017.
    [21] X. Huang, S. Han, W. Huang and X. Liu, Enhancing solar cell efficiency: the search for luminescent materials as spectral converters, Chemical Society Reviews, 42, 173-201, 2013.
    [22] S. E. Crawford, P. R. Ohodnicki and J. P. Baltrus, Materials for the photoluminescent sensing of rare earth elements: challenges and opportunities, Journal of Materials Chemistry C, 8, 7975-8006, 2020.
    [23] J.-X. Wang, J. Yin, O. Shekhah, O. M. Bakr, M. Eddaoudi and O. F. Mohammed, Energy transfer in metal–organic frameworks for fluorescence sensing, ACS applied materials & interfaces, 14, 9970-9986, 2022.
    [24] A. Piras, C. Ehlert and G. Gryn'ova, Sensing and sensitivity: Computational chemistry of graphene‐based sensors, Wiley Interdisciplinary Reviews: Computational Molecular Science, 11, e1526, 2021.
    [25] A. Shrivastava and V. B. Gupta, Methods for the determination of limit of detection and limit of quantitation of the analytical methods, Chron. Young Sci, 2, 21-25, 2011.
    [26] H. Min, Z. Han, M. Wang, Y. Li, T. Zhou, W. Shi and P. Cheng, A water-stable terbium metal–organic framework as a highly sensitive fluorescent sensor for nitrite, Inorganic Chemistry Frontiers, 7, 3379-3385, 2020.
    [27] M. H. Gehlen, The centenary of the Stern-Volmer equation of fluorescence quenching: From the single line plot to the SV quenching map, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 42, 100338, 2020.
    [28] A. S. Tanwar, R. Parui, R. Garai, M. A. Chanu and P. K. Iyer, Dual “Static and Dynamic” fluorescence quenching mechanisms based detection of TNT via a cationic conjugated polymer, ACS Measurement Science Au, 2, 23-30, 2021.
    [29] J.-C. G. Bünzli and C. Piguet, Taking advantage of luminescent lanthanide ions, Chemical Society Reviews, 34, 1048-1077, 2005.
    [30] J.-C. G. Bünzli, Lanthanide luminescence for biomedical analyses and imaging, Chemical reviews, 110, 2729-2755, 2010.
    [31] P. R. Selvin, Principles and biophysical applications of lanthanide-based probes, Annual Review of Biophysics and Biomolecular Structure, 31, 275-302, 2002.
    [32] B. D. Chandler, D. T. Cramb and G. K. Shimizu, Microporous metal− organic frameworks formed in a stepwise manner from luminescent building blocks, Journal of the American Chemical Society, 128, 10403-10412, 2006.
    [33] H. Dong, L.-D. Sun and C.-H. Yan, Basic understanding of the lanthanide related upconversion emissions, Nanoscale, 5, 5703-5714, 2013.
    [34] N. Sabbatini, M. Guardigli and J.-M. Lehn, Luminescent lanthanide complexes as photochemical supramolecular devices, Coordination Chemistry Reviews, 123, 201-228, 1993.
    [35] E. Mathieu, A. Sipos, E. Demeyere, D. Phipps, D. Sakaveli and K. E. Borbas, Lanthanide-based tools for the investigation of cellular environments, Chemical Communications, 54, 10021-10035, 2018.
    [36] D. E. Barry, D. F. Caffrey and T. Gunnlaugsson, Lanthanide-directed synthesis of luminescent self-assembly supramolecular structures and mechanically bonded systems from acyclic coordinating organic ligands, Chemical Society Reviews, 45, 3244-3274, 2016.
    [37] M. D. Allendorf, C. A. Bauer, R. Bhakta and R. Houk, Luminescent metal–organic frameworks, Chemical Society Reviews, 38, 1330-1352, 2009.
    [38] M.-l. Liu, Q. Shi, L.-f. Liu and W.-b. Li, Lanthanide-aromatic iminodiacetate frameworks with helical tubes: structure, properties, and low-temperature heat capacity, ACS omega, 6, 10475-10485, 2021.
    [39] S. V. Eliseeva and J.-C. G. Bünzli, Lanthanide luminescence for functional materials and bio-sciences, Chemical Society Reviews, 39, 189-227, 2010.
    [40] H. Furukawa, K. E. Cordova, M. O’Keeffe and O. M. Yaghi, The chemistry and applications of metal–organic frameworks, Science, 341, 1230444, 2013.
    [41] A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp and O. K. Farha, Chemical, thermal and mechanical stabilities of metal–organic frameworks, Nature Reviews Materials, 1, 1-15, 2016.
    [42] S. Kitagawa, R. Kitaura and S. i. Noro, Functional porous coordination polymers, Angewandte Chemie International Edition, 43, 2334-2375, 2004.
    [43] S. Jeoung, S. Kim, M. Kim and H. R. Moon, Pore engineering of metal-organic frameworks with coordinating functionalities, Coordination Chemistry Reviews, 420, 213377, 2020.
    [44] S. M. Cohen, Postsynthetic methods for the functionalization of metal–organic frameworks, Chemical reviews, 112, 970-1000, 2012.
    [45] L. J. Murray, M. Dincă and J. R. Long, Hydrogen storage in metal–organic frameworks, Chemical Society Reviews, 38, 1294-1314, 2009.
    [46] X. Pan, X. Si, X. Zhang, Q. Yao, Y. Li, W. Duan, Y. Qiu, J. Su and X. Huang, A robust and porous titanium metal–organic framework for gas adsorption, CO2 capture and conversion, Dalton Transactions, 52, 3896-3906, 2023.
    [47] J.-R. Li, J. Sculley and H.-C. Zhou, Metal–organic frameworks for separations, Chemical reviews, 112, 869-932, 2012.
    [48] Y. Li, Y. Wang, W. Fan and D. Sun, Flexible metal–organic frameworks for gas storage and separation, Dalton Transactions, 51, 4608-4618, 2022.
    [49] J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen and J. T. Hupp, Metal–organic framework materials as catalysts, Chemical Society Reviews, 38, 1450-1459, 2009.
    [50] S. Daliran, A. R. Oveisi, Y. Peng, A. López-Magano, M. Khajeh, R. Mas-Ballesté, J. Alemán, R. Luque and H. Garcia, Metal–organic framework (MOF)-, covalent-organic framework (COF)-, and porous-organic polymers (POP)-catalyzed selective C–H bond activation and functionalization reactions, Chemical Society Reviews, 51, 7810-7882, 2022.
    [51] S. H. Park, R. A. Peralta, D. Moon and N. C. Jeong, Dynamic weak coordination bonding of chlorocarbons enhances the catalytic performance of a metal–organic framework material, Journal of Materials Chemistry A, 10, 23499-23508, 2022.
    [52] J. D. Evans, C. J. Sumby and C. J. Doonan, Post-synthetic metalation of metal–organic frameworks, Chemical Society Reviews, 43, 5933-5951, 2014.
    [53] M. Gutiérrez, Y. Zhang and J.-C. Tan, Confinement of luminescent guests in metal–organic frameworks: understanding pathways from synthesis and multimodal characterization to potential applications of LG@ MOF systems, Chemical Reviews, 122, 10438-10483, 2022.
    [54] S. Mollick, T. N. Mandal, A. Jana, S. Fajal, A. V. Desai and S. K. Ghosh, Ultrastable luminescent hybrid bromide perovskite@ MOF nanocomposites for the degradation of organic pollutants in water, ACS Applied Nano Materials, 2, 1333-1340, 2019.
    [55] C.-W. Kung, K.-i. Otake, R. J. Drout, S. Goswami, O. K. Farha and J. T. Hupp, Post-synthetic cyano-ferrate (II) functionalization of a metal–organic framework, NU-1000, Langmuir, 39, 4936-4942, 2023.
    [56] Y.-L. Chen, C.-H. Shen, C.-W. Huang and C.-W. Kung, Terbium-modified two-dimensional zirconium-based metal–organic frameworks for photoluminescence detection of nitrite, Molecular Systems Design & Engineering, 8, 330-340, 2023.
    [57] S.-C. Yang, B. Muthiah, J.-W. Chang, M.-D. Tsai, Y.-C. Wang, Y.-P. Li and C.-W. Kung, Support effect in metal–organic framework-derived copper-based electrocatalysts facilitating the reduction of nitrate to ammonia, Electrochimica Acta, 492, 144348, 2024.
    [58] L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne and J. T. Hupp, Metal–organic framework materials as chemical sensors, Chemical reviews, 112, 1105-1125, 2012.
    [59] M. C. So, G. P. Wiederrecht, J. E. Mondloch, J. T. Hupp and O. K. Farha, Metal–organic framework materials for light-harvesting and energy transfer, Chemical Communications, 51, 3501-3510, 2015.
    [60] I. Stassen, N. Burtch, A. Talin, P. Falcaro, M. Allendorf and R. Ameloot, An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors, Chemical Society Reviews, 46, 3185-3241, 2017.
    [61] C. H. Chuang and C. W. Kung, Metal− organic frameworks toward electrochemical sensors: challenges and opportunities, Electroanalysis, 32, 1885-1895, 2020.
    [62] M. Ko, L. Mendecki, A. M. Eagleton, C. G. Durbin, R. M. Stolz, Z. Meng and K. A. Mirica, Employing conductive metal–organic frameworks for voltammetric detection of neurochemicals, Journal of the American Chemical Society, 142, 11717-11733, 2020.
    [63] Y. Cui, F. Zhu, B. Chen and G. Qian, Metal–organic frameworks for luminescence thermometry, Chemical Communications, 51, 7420-7431, 2015.
    [64] Z. Hu, K. Tan, W. P. Lustig, H. Wang, Y. Zhao, C. Zheng, D. Banerjee, T. J. Emge, Y. J. Chabal and J. Li, Effective sensing of RDX via instant and selective detection of ketone vapors, Chemical Science, 5, 4873-4877, 2014.
    [65] B. Wang, X.-L. Lv, D. Feng, L.-H. Xie, J. Zhang, M. Li, Y. Xie, J.-R. Li and H.-C. Zhou, Highly stable Zr (IV)-based metal–organic frameworks for the detection and removal of antibiotics and organic explosives in water, Journal of the American Chemical Society, 138, 6204-6216, 2016.
    [66] N. C. Burtch, H. Jasuja and K. S. Walton, Water stability and adsorption in metal–organic frameworks, Chemical reviews, 114, 10575-10612, 2014.
    [67] S. Yuan, J.-S. Qin, C. T. Lollar and H.-C. Zhou, Stable metal–organic frameworks with group 4 metals: current status and trends, ACS Central Science, 4, 440-450, 2018.
    [68] S. Pal, S.-S. Yu and C.-W. Kung, Group 4 metal-based metal—organic frameworks for chemical sensors, Chemosensors, 9, 306, 2021.
    [69] M. Dan-Hardi, C. Serre, T. Frot, L. Rozes, G. Maurin, C. Sanchez and G. Férey, A new photoactive crystalline highly porous titanium (IV) dicarboxylate, Journal of the American Chemical Society, 131, 10857-10859, 2009.
    [70] J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga and K. P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, Journal of the American Chemical Society, 130, 13850-13851, 2008.
    [71] C.-H. Shen, Y.-N. Chang, Y.-L. Chen and C.-W. Kung, Sulfonate-grafted metal–organic framework─ a porous alternative to Nafion for electrochemical sensors, ACS Materials Letters, 5, 1938-1943, 2023.
    [72] B. J. Deibert and J. Li, A distinct reversible colorimetric and fluorescent low pH response on a water-stable zirconium–porphyrin metal–organic framework, Chemical Communications, 50, 9636-9639, 2014.
    [73] S. Pal, Y.-Z. Su, Y.-W. Chen, C.-H. Yu, C.-W. Kung and S.-S. Yu, 3D printing of metal–organic framework-Based ionogels: wearable sensors with colorimetric and mechanical responses, ACS applied materials & interfaces, 14, 28247-28257, 2022.
    [74] C. Jia, T. He and G.-M. Wang, Zirconium-based metal-organic frameworks for fluorescent sensing, Coordination Chemistry Reviews, 476, 214930, 2023.
    [75] S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang and P. Zhang, Stable metal–organic frameworks: design, synthesis, and applications, Advanced Materials, 30, 1704303, 2018.
    [76] A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke and P. Behrens, Modulated synthesis of Zr‐based metal–organic frameworks: from nano to single crystals, Chemistry–A European Journal, 17, 6643-6651, 2011.
    [77] K. O. Kirlikovali, S. L. Hanna, F. A. Son and O. K. Farha, Back to the basics: developing advanced metal–organic frameworks using fundamental chemistry concepts, ACS Nanoscience Au, 3, 37-45, 2022.
    [78] R. S. Forgan, Modulated self-assembly of metal–organic frameworks, Chemical science, 11, 4546-4562, 2020.
    [79] A. Dhakshinamoorthy, A. M. Asiri and H. Garcia, 2D metal–organic frameworks as multifunctional materials in heterogeneous catalysis and electro/photocatalysis, Advanced Materials, 31, 1900617, 2019.
    [80] H. Yuan, G. Liu, Z. Qiao, N. Li, P. J. S. Buenconsejo, S. Xi, A. Karmakar, M. Li, H. Cai and S. J. Pennycook, Solution‐Processable Metal–Organic Framework Nanosheets with Variable Functionalities, Advanced Materials, 33, 2101257, 2021.
    [81] K. M. Snook and D. J. Xiao, Macrocyclic ligands open new channels in electrically conductive metal-organic frameworks, Chem, 10, 24-25, 2024.
    [82] L. Cao, Z. Lin, F. Peng, W. Wang, R. Huang, C. Wang, J. Yan, J. Liang, Z. Zhang and T. Zhang, Self‐supporting metal–organic layers as single‐site solid catalysts, Angewandte Chemie International Edition, 55, 4962-4966, 2016.
    [83] L. Cao and C. Wang, Metal–organic layers for electrocatalysis and photocatalysis, ACS Central Science, 6, 2149-2158, 2020.
    [84] Z. Li, D. Zhan, A. Saeed, N. Zhao, J. Wang, W. Xu and J. Liu, Fluoride sensing performance of fluorescent NH2-MIL-53 (Al): 2D nanosheets vs. 3D bulk, Dalton Transactions, 50, 8540-8548, 2021.
    [85] J. Ma, A. G. Wong-Foy and A. J. Matzger, The role of modulators in controlling layer spacings in a tritopic linker based zirconium 2D microporous coordination polymer, Inorganic chemistry, 54, 4591-4593, 2015.
    [86] L. Feng, Y. Qiu, Q.-H. Guo, Z. Chen, J. S. Seale, K. He, H. Wu, Y. Feng, O. K. Farha and R. D. Astumian, Active mechanisorption driven by pumping cassettes, Science, 374, 1215-1221, 2021.
    [87] D.-M. Chen, Y.-P. Zheng and S.-M. Fang, A polyhedron-based porous Tb (III)–organic framework with dual emissions for highly selective detection of Al3+ ion, Inorganic Chemistry Communications, 117, 107967, 2020.
    [88] H. Xu, H.-C. Hu, C.-S. Cao and B. Zhao, Lanthanide organic framework as a regenerable luminescent probe for Fe3+, Inorganic chemistry, 54, 4585-4587, 2015.
    [89] A. Shmelev, G. Kulikov, V. Apse, E. Kulikov and V. Artisyuk, Radiogenic lead with dominant content of 208Pb: new coolant and neutron moderator for innovative nuclear facilities, Science and Technology of Nuclear Installations, 2011, 252903, 2011.
    [90] X. Han, J. Hu, C. Chen, Y. Yuan and Z. Shi, Copper-catalysed, diboron-mediated cis-dideuterated semihydrogenation of alkynes with heavy water, Chemical Communications, 55, 6922-6925, 2019.
    [91] Y. Sawama, M. Masuda, N. Yasukawa, R. Nakatani, S. Nishimura, K. Shibata, T. Yamada, Y. Monguchi, H. Suzuka and Y. Takagi, Disiloxane synthesis based on silicon–hydrogen bond activation using gold and platinum on carbon in water or heavy water, The Journal of Organic Chemistry, 81, 4190-4195, 2016.
    [92] S. M. Anthony, A. V. Kelleghan, M. M. Mehta and N. K. Garg, From heavy water to heavy aldehydes, Nature Catalysis, 2, 1058-1059, 2019.
    [93] F. Legros, P. Fernandez‐Rodriguez, A. Mishra, R. Weck, A. Bauer, M. Sandvoss, S. Ruf, M. Méndez, H. Mora‐Radó and N. Rackelmann, Photoredox‐mediated hydrogen isotope exchange reactions of amino‐acids, peptides, and peptide‐derived drugs, Chemistry–A European Journal, 26, 12738-12742, 2020.
    [94] I. A. Mir, K. Rawat and H. Bohidar, CuInGaSe nanocrystals for detection of trace amount of water in D2O (at ppm level), Crystal Research and Technology, 51, 561-568, 2016.
    [95] X. Liu, L. Shi, L. Shi, M. Wei, Z. Zhao and W. Min, Towards mapping mouse metabolic tissue atlas by mid‐infrared imaging with heavy water labeling, Advanced Science, 9, 2105437, 2022.
    [96] V. Kselíková, M. Vítová and K. Bišová, Deuterium and its impact on living organisms, Folia Microbiologica, 64, 673-681, 2019.
    [97] M. I. Blake, H. L. Crespi and J. J. Katz, Studies with deuterated drugs, Journal of Pharmaceutical Sciences, 64, 367-391, 1975.
    [98] D. Kushner, A. Baker and T. Dunstall, Pharmacological uses and perspectives of heavy water and deuterated compounds, Canadian Journal of Physiology and Pharmacology, 77, 79-88, 1999.
    [99] I. Yasumori and S. Ohno, The sensitive gas chromatography of para-, orthohydrogen, hydrogen deuteride and deuterium, Bulletin of the Chemical Society of Japan, 39, 1302-1306, 1966.
    [100] M. Mayer and T. L. James, Detecting ligand binding to a small RNA target via saturation transfer difference NMR experiments in D2O and H2O, Journal of the American Chemical Society, 124, 13376-13377, 2002.
    [101] I. Litvak, Y. Anker and H. Cohen, On-line in situ determination of deuterium content in water via FTIR spectroscopy, RSC Advances, 8, 28472-28479, 2018.
    [102] K. Jinno, Determination of deuterium oxide in water by reversed-phase high-performance liquid chromatography, Analytica Chimica Acta, 147, 393-395, 1983.
    [103] G. Men, G. Zhang, C. Liang, H. Liu, B. Yang, Y. Pan, Z. Wang and S. Jiang, A dual channel optical detector for trace water chemodosimetry and imaging of live cells, Analyst, 138, 2847-2857, 2013.
    [104] J. Li, D. Yim, W.-D. Jang and J. Yoon, Recent progress in the design and applications of fluorescence probes containing crown ethers, Chemical Society Reviews, 46, 2437-2458, 2017.
    [105] A. C. Sedgwick, L. Wu, H.-H. Han, S. D. Bull, X.-P. He, T. D. James, J. L. Sessler, B. Z. Tang, H. Tian and J. Yoon, Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents, Chemical Society Reviews, 47, 8842-8880, 2018.
    [106] P. Verwilst, H. S. Kim, S. Kim, C. Kang and J. S. Kim, Shedding light on tau protein aggregation: the progress in developing highly selective fluorophores, Chemical Society Reviews, 47, 2249-2265, 2018.
    [107] J. Xia, Y.-L. Yu and J.-H. Wang, Fe3+-Catalyzed low-temperature preparation of multicolor carbon polymer dots with the capability of distinguishing D2O from H2O, Chemical Communications, 55, 12467-12470, 2019.
    [108] L. Tcelykh, V. Kozhevnikova, A. Goloveshkin, L. Lepnev, T. Popelensky and V. Utochnikova, Sensing of H2O in D2O: is there an easy way?, Analyst, 145, 759-763, 2020.
    [109] Y. Lang, S. Wu, Q. Yang, Y. Luo, X. Jiang and P. Wu, Analysis of the isotopic purity of D2O with the characteristic NIR-II phosphorescence of singlet oxygen from a photostable polythiophene photosensitizer, Analytical Chemistry, 93, 9737-9743, 2021.
    [110] J. Kucera, P. Lubal, S. Lis and P. Taborsky, Determination of deuterium oxide content in water based on luminescence quenching, Talanta, 184, 364-368, 2018.
    [111] J. Xiong, Y. Chen, S. Li, X. Tan, L. Wang, J. Chen, Q. Luo, Q. Gao, X. Tong and F. Luo, Dual-color visual ratiometric fluorescence sensing for H2O and D2O mixtures using a hexanuclear Ln (III) cluster-based metal–organic framework, Inorganic Chemistry, 63, 4269-4278, 2024.
    [112] S. Zhang, W. Yin, Z. Yang, I. Shah, Y. Yang, Z. Li, S. Zhang, B. Zhang, Z. Lei and H. Ma, Facile polymerization strategy for the construction of Eu3+-based fluorescent materials with the capability of distinguishing D2O from H2O, Analytical Chemistry, 92, 7808-7815, 2020.
    [113] W. D. Horrocks Jr and E. G. Hove, Water-soluble lanthanide porphyrins: shift reagents for aqueous solution, Journal of the American Chemical Society, 100, 4386-4392, 1978.
    [114] C. Doffek, N. Alzakhem, C. Bischof, J. Wahsner, T. Güden-Silber, J. Lügger, C. Platas-Iglesias and M. Seitz, Understanding the quenching effects of aromatic C–H-and C–D-oscillators in near-IR lanthanoid luminescence, Journal of the American Chemical Society, 134, 16413-16423, 2012.
    [115] F. Zheng, C. Li, Y. Huang, Z. Lu, X. Hou and Y. Luo, Recent advances in optical heavy water sensors, Chemical Communications, 2025.
    [116] X. Wang, L. Yue, P. Zhou, L. Fan and Y. He, Lanthanide–organic frameworks featuring three-dimensional inorganic connectivity for multipurpose hydrocarbon separation, Inorganic Chemistry, 60, 17249-17257, 2021.
    [117] Q. Yao, A. Bermejo Gómez, J. Su, V. Pascanu, Y. Yun, H. Zheng, H. Chen, L. Liu, H. N. Abdelhamid and B. n. Martín-Matute, Series of highly stable isoreticular lanthanide metal–organic frameworks with expanding pore size and tunable luminescent properties, Chemistry of Materials, 27, 5332-5339, 2015.
    [118] M. Tian, J. Zheng, J. Xue, X. Pan, D. Zhou, Q. Yao, Y. Li, W. Duan, J. Su and X. Huang, A series of microporous and robust Ln-MOFs showing luminescence properties and catalytic performances towards Knoevenagel reactions, Dalton Transactions, 50, 17785-17791, 2021.
    [119] V. E. Gontcharenko, A. M. Lunev, I. V. Taydakov, V. M. Korshunov, A. A. Drozdov and Y. A. Belousov, Luminescent lanthanide-based sensor for H2O detection in aprotic solvents and D2O, IEEE Sensors Journal, 19, 7365-7372, 2019.
    [120] Y. Zhang, L. Chen, Z. Liu, W. Liu, M. Yuan, J. Shu, N. Wang, L. He, J. Zhang and J. Xie, Full-range ratiometric detection of D2O in H2O by a heterobimetallic uranyl/lanthanide framework with 4f/5f bimodal emission, ACS Applied Materials & Interfaces, 12, 16648-16654, 2020.
    [121] X. Fan, Z. Guo, X. Wen, W. Liu, B. Guan, F. Yin, X. Hong, T. Tan, K. Wang and J. Wang, Solvent-induced luminescence behavior of Ce/Eu@ Gd-MOF for ratiometric detection of D2O in H2O, Journal of Materials Chemistry C, 12, 868-873, 2024.
    [122] H. G. Brittain, Intermolecular energy transfer between lanthanide complexes in aqueous solution. 1. Transfer from terbium (III) to europium (III) complexes of pyridinecarboxylic acids, Inorganic Chemistry, 17, 2762-2766, 1978.
    [123] M. T. Seuffert, A. E. Sedykh, T. C. Schäfer, J. Becker and K. Müller-Buschbaum, Homoleptic coordination polymers and complexes of transition metals with 2-(1, 2, 4-1 H-triazol-3-yl) pyridine and tuning towards white-light emission, Dalton Transactions, 54, 5075-5090, 2025.
    [124] F. Wang, X. Hu, J. Hu, Q. Peng, B. Zheng, J. Du and D. Xiao, Fluorescence assay for alkaline phosphatase activity based on energy transfer from terbium to europium in lanthanide coordination polymer nanoparticles, Journal of Materials Chemistry B, 6, 6008-6015, 2018.
    [125] H. Noh, Y. Cui, A. W. Peters, D. R. Pahls, M. A. Ortuño, N. A. Vermeulen, C. J. Cramer, L. Gagliardi, J. T. Hupp and O. K. Farha, An exceptionally stable metal–organic framework supported molybdenum (VI) oxide catalyst for cyclohexene epoxidation, Journal of the American Chemical Society, 138, 14720-14726, 2016.
    [126] J. Liu, L. R. Redfern, Y. Liao, T. Islamoglu, A. Atilgan, O. K. Farha and J. T. Hupp, Metal–organic-framework-supported and-isolated ceria clusters with mixed oxidation states, ACS applied materials & interfaces, 11, 47822-47829, 2019.
    [127] T.-C. Lin, K.-C. Wu, J.-W. Chang, Y.-L. Chen, M.-D. Tsai and C.-W. Kung, Immobilization of europium and terbium ions with tunable ratios on a dispersible two-dimensional metal–organic framework for ratiometric photoluminescence detection of D2O, Dalton Transactions, 53, 11426-11435, 2024.
    [128] J. Zhang, S. B. Peh, J. Wang, Y. Du, S. Xi, J. Dong, A. Karmakar, Y. Ying, Y. Wang and D. Zhao, Hybrid MOF-808-Tb nanospheres for highly sensitive and selective detection of acetone vapor and Fe3+ in aqueous solution, Chemical Communications, 55, 4727-4730, 2019.
    [129] Y. Wang, L. Feng, J. Pang, J. Li, N. Huang, G. S. Day, L. Cheng, H. F. Drake, Y. Wang and C. Lollar, Photosensitizer‐anchored 2D MOF nanosheets as highly stable and accessible catalysts toward artemisinin production, Advanced Science, 6, 1802059, 2019.
    [130] M.-D. Tsai, Y.-L. Chen, J.-W. Chang, S.-C. Yang and C.-W. Kung, Sulfonate-functionalized two-dimensional metal–organic framework as a “dispersant” for polyaniline to boost its electrochemical capacitive performance, ACS Applied Energy Materials, 6, 11268-11277, 2023.
    [131] J.-W. Chang, T.-C. Lin, Y.-L. Chen, P.-C. Han, S.-C. Yang, M.-D. Tsai, K. C.-W. Wu and C.-W. Kung, Dual modifications of sensitizers and lanthanide ions on a two-dimensional zirconium-based metal–organic framework for photoluminescent detection, CrystEngComm, 26, 2852-2861, 2024.
    [132] Y. S. Wang, Y. C. Chen, J. H. Li and C. W. Kung, Toward metal–organic‐framework‐based supercapacitors: room‐temperature synthesis of electrically conducting MOF‐based nanocomposites decorated with redox‐active manganese, European Journal of Inorganic Chemistry, 2019, 3036-3044, 2019.
    [133] J. Yang, Y. Dai, X. Zhu, Z. Wang, Y. Li, Q. Zhuang, J. Shi and J. Gu, Metal–organic frameworks with inherent recognition sites for selective phosphate sensing through their coordination-induced fluorescence enhancement effect, Journal of Materials Chemistry A, 3, 7445-7452, 2015.
    [134] J. Liu, Z. Li, X. Zhang, K.-i. Otake, L. Zhang, A. W. Peters, M. J. Young, N. M. Bedford, S. P. Letourneau and D. J. Mandia, Introducing nonstructural ligands to zirconia-like metal–organic framework nodes to tune the activity of node-supported nickel catalysts for ethylene hydrogenation, ACS Catal., 9, 3198-3207, 2019.
    [135] D. Kim, S.-C. Kim, J.-S. Bae, S. Kim, S.-J. Kim and J.-C. Park, Eu2+-activated alkaline-earth halophosphates, M5(PO4)3X: Eu2+ (M= Ca, Sr, Ba; X= F, Cl, Br) for NUV-LEDs: site-selective crystal field effect, Inorganic chemistry, 55, 8359-8370, 2016.
    [136] B.-H. Kwon, H. S. Jang, H. S. Yoo, S. W. Kim, D. S. Kang, S. Maeng, D. S. Jang, H. Kim and D. Y. Jeon, White-light emitting surface-functionalized ZnSe quantum dots: europium complex-capped hybrid nanocrystal, Journal of Materials Chemistry, 21, 12812-12818, 2011.
    [137] D. Kim, Y.-H. Jin, K.-W. Jeon, S. Kim, S.-J. Kim, O. H. Han, D.-K. Seo and J.-C. Park, Blue-silica by Eu 2+-activator occupied in interstitial sites, RSC Advances, 5, 74790-74801, 2015.
    [138] E.-J. Cho, S.-J. Oh, S. Suga, T. Suzuki and T. Kasuya, Electronic structure study of Eu intermetallic compounds by photoelectron spectroscopy, Journal of Electron Spectroscopy and Related Phenomena, 77, 173-181, 1996.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE