簡易檢索 / 詳目顯示

研究生: 林建南
Lin, Chien-Nan
論文名稱: 光波與奈米金屬薄膜交互作用之譜方法模擬
Pseudospectral Modelling of Light Interacting upon Nano Thin Film with Subwavelength Holes or Slits
指導教授: 鄧君豪
Teng, Chun-Hao
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 45
中文關鍵詞: 次波長狹縫
外文關鍵詞: subwavelength slits
相關次數: 點閱:87下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在利用數值譜方法模擬光波撞擊到次波長孔洞結構所產生的新光學現象,並且探討此光學現象的控制因素。

    The objective of this study is to use pseudospectral schemes for simulating new optical phenomenon that light impinges on the structure with a single subwavelength slit. We then explore the main factors effecting the optical phenomenon.

    List of Figures iii 1 Introduction 1 2 The Governing Equations 3 2.1 The Maxwell Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Characteristic Boundary Conditions . . . . . . . . . . . . . . . . . 4 3 Numerical Methods 8 3.1 Pseudospectral Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 Semidiscrete Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3 Temporal Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.4 Absorbing Boundary Layers . . . . . . . . . . . . . . . . . . . . . . . 11 3.5 Source Excitation Treatments . . . . . . . . . . . . . . . . . . . . . . 11 4 Numerical Results 14 4.1 Computational Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.2 Optical Transmission Through Slit: TE and TM Mode . . . 15 4.3 Optical Transmission Characteristics . . . . . . . . . . . . . . . . 15 4.3.1 Case 1: A PEC Screen With An Open Slit . . . . . . . . . . . 16 4.3.2 Case 2: A PEC Thin-Film With An Open Slit . . . . . . . . . 18 4.3.3 Case 3: A Corrugated Surface PEC Thin-Film With An Open Slit 18 4.4 Highly Directional Diffraction . . . . . . . . . . . . . . . . . . . . . 20 5 Concluding Remarks 43

    [1] S. Abarbanel and D. Gottlieb, A mathematical analysis of the pml method,
    J. Comput. Phys., 134 (1997), pp. 357–363.
    [2] , On the construction and analysis of absorbing layers in cem, Appl. Numer.
    Math., 27 (1998), pp. 331–340.
    [3] J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic
    waves, J. Comput. Phys., 114 (1994), pp. 185–200.
    [4] H. A. Bethe, Theory of diffraction by small holes, Physical Review, 66 (1944),
    pp. 163–182.
    [5] J. Bravo-Abad, L. Mart´ın-Moreno, and F. J. Garc´ıa-Vidal, Transmission
    properties of a single metallic slit: From the subwavelength regime to the
    geometrical-optics limit, Physical Review E, 69 (2004), p. 026601.
    [6] C. Canuto, M. Hussaini, A. Quarteroni, and T. Zang, Spectral Methods
    in Fluid Dynamics, Springer Series in Computational Physics, Springer-Verlag,
    Berlin, 1988.
    [7] M. H. Carpenter and C. A. Kennedy, Fourth order 2n-storage runge-kutta
    scheme, NASA, NASA-TM-109112 (1994).
    [8] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff,
    Extraordinary optical transmission through sub-wavelength hole arrays, Nature
    (London), 391 (1998), pp. 667–669.
    [9] G.-X. Fan, Q. H. Liu, and J. S. Hesthaven, Multidomain pseudospectral
    time-domain simulations of scattering by objects buried in lossy media, IEEE
    Transactions on Geoscience and Remote Sensing, 40 (2002), pp. 1366–1373.
    [10] F. J. Garc´ıa-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Mart´ın-
    Moreno, Multiple paths to enhance optical transmission through a single subwavelength
    slit, Physical Review Letters, 90 (2003), p. 213901.
    [11] B. Gustafsson, H. Kreiss, and J. Oliger, Time Dependent Problems and
    Difference Methods, Wiley, 1995.
    [12] J. Lindberg, K. Lindfors, T. Set¨al¨a, M. Kaivola, and A. T. Friberg,
    Spectral analysis of resonant transmission of light through a single sub-wavelength
    slit, Optics Express, 12 (2004), pp. 623–632.
    [13] L. Mart´ın-Moreno, F. J. Garc´ıa-Vidal, H. J. Lezec, A. Degiron, and
    T. W. Ebbesen, Theory of highly directional emission from a single subwavelength
    aperture surrounded by surface corrugations, Physical Review Letters, 90
    (2003), p. 167401.
    [14] M. Ohtsu and K. Kobayashi, Optical Near Fields-Introduction to Classical
    and Quantum Theories of Electromagnetic Phenomena at the Nanoscale, Springer-
    Verlag, 2004.
    [15] J. R. Suckling, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, Resonant
    transmission of microwaves through a finite length subwavelength metallic
    slit, New Journal of Physics, 7 (2005), pp. 1–11.
    [16] A. Taflove, Computational Electrodynamics- The Finite-Difference Time-
    Domain Method, Aztech House, Boston, 1995.
    [17] Y. Takakura, Optical resonance in a narrow slit in a thick metallic screen,
    Physical Review Letters, 86 (2001), pp. 5601–5603.
    [18] B. Yang, D. Gottlieb, and J. S. Hesthaven, Spectral simulations of electromagnetic
    wave scattering, Journal of Computational Physics, 134 (1997), pp. 216–
    230.
    [19] K. S. Yee, Numerical solution of initial boundary value problems involving
    maxwell’s equations in isotropic media, IEEE Trans. Antennas Propagat., AP-14
    (1966), pp. 302–307.
    45

    下載圖示 校內:2009-08-01公開
    校外:2011-08-01公開
    QR CODE