| 研究生: |
陳典賦 Chen, Dian-Fu |
|---|---|
| 論文名稱: |
並聯驅動肩外甲自適復健機器之設計 Design of a Parallel Actuated Self-adaptive Exoskeleton for Shoulder Rehabilitation |
| 指導教授: |
藍兆杰
Lan, Chao-Chieh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 上肢復健 、肩外甲機構 、並聯式球面機構 、關節錯位 、自適機構 |
| 外文關鍵詞: | Shoulder rehabilitation, upper limb exoskeleton, parallel spherical mechanism, axis misalignment, adaptive mechanism |
| 相關次數: | 點閱:104 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文所發展之肩部復健外甲裝置,目的為協助中風病患進行中風後之上肢復健療程,以幫助失能上肢回復正常生活機能。而目前市售之復健外甲以串聯式外甲為主,其體積、重量與成本均難以使其普及化,因此本文提出以球面機構與曲柄滑塊機構之組合設計一並聯式肩外甲機構,其尺寸、重量均小於市面上之肩外甲機構,但工作範圍與輸出力量亦可滿足肩部復健療程需求。本文之復健外甲機構額外搭載靜平衡機構與串聯彈性致動器,靜平衡機構主要由撓性元件構成,透過重力位能與彈力位能間之轉換,可減少致動器之負荷,進一步減少致動器成本,而串聯彈性致動器用以監測外甲機構施予使用者之力量,以達到監測安全性之功能,並可有效減少感測器之數量。此外為增進使用者之穿戴舒適度,本研究提出一組自適機構之設計,透過自適機構連結使用者與外甲,可使外甲適應肩關節位移所產生人機關節間之錯位量,且可使外甲適用於不同體型之使用者,並加入實驗所量化之肩關節運動行為完成自適機構之運動與扭矩分析,以評估搭載自適機構後外甲之效能。相較於以致動器模擬肩關節之運動,透過自適機構可省去多餘致動器之數量,進而降低外甲整體成本。預期透過以上設計
概念,可使本研究中之外甲機構應付肩部復健需求,使其更普及化於相關醫療領域。
Powered exoskeletons can facilitate after-stroke rehabilitation of patients with shoulder disabilities. Designs using serial mechanisms usually result in complicated and bulky exoskeletons. This paper presents a new parallel actuated shoulder exoskeleton that consists of two spherical mechanisms, two slider crank mechanisms,
and a gravity balancing mechanism. The actuators are grounded and placed side by side.Thus better inertia properties can be achieved while lightweight and
compactness are maintained. A self-adaptive mechanism with only passive joints is introduced to compensate for the exoskeleton-limb misalignment and size variation
among different subjects. Linear series elastic actuators (SEAs) are proposed to obtain accurate force at the exoskeleton-limb interface. The number of force sensors
and actuators are minimized by using the self-adaptive mechanism and SEAs. New optimal method is proposed to design the spherical mechanism of the exoskeleton,
making the design process more efficient. We expect this exoskeleton can provide a means of automatic shoulder rehabilitation.
[1] Mackay, J., Mensah, G. A., Mendis, S., & Greenlund, K. (2004). The atlas of heart
disease and stroke. World Health Organization.
[2] 張志仲,中華民國九十五年,「中風患者上肢動作功能之運動學評估與雙側
性訓練分析」,成功大學醫學工程學系博士學位論文。
[3] Commercial Product, "ReoGOTM," http://motorika.com/product-1/
[4] Rahman, T., Sample, W., Jayakumar, S., & King, M. M. (2006). Passive
exoskeletons for assisting limb movement. Journal of rehabilitation research and
development, 43(5), 583.
[5] Gijbels, D., Lamers, I., Kerkhofs, L., Alders, G., Knippenberg, E., & Feys, P.
(2011). The Armeo Spring as training tool to improve upper limb functionality in
multiple sclerosis: a pilot study. Journal of neuroengineering and rehabilitation,
8(1), 1.
[6] Masiero, S., Celia, A., Armani, M., & Rosati, G. (2006). A novel robot device in
rehabilitation of post-stroke hemiplegic upper limbs. Aging clinical and
experimental research, 18(6), 531-535.
[7] Wu, T. M., Wang, S. Y., & Chen, D. Z. (2011). Design of an exoskeleton for
strengthening the upper limb muscle for overextension injury
prevention.Mechanism and Machine Theory, 46(12), 1825-1839.
[8] 陳達仁、吳宗明、張桓豪、鄔明輝、林佳穎與周良駿,中華民國一○二年,
「外引式上肢阻力訓練機構的設計與評估」,國科會工程處機械固力學門成
果發表會,宜蘭,台灣。
[9] Lu, Q., Ortega, C., & Ma, O. (2011). Passive gravity compensation mechanisms:
technologies and applications. Recent Patents on Engineering, 5(1), 32-44.
[10] Nef, T., Guidali, M., & Riener, R. (2009). ARMin III–arm therapy exoskeleton
with an ergonomic shoulder actuation. Applied Bionics and Biomechanics, 6(2),
127-142.
[11] Commercial Product, "ArmeoPower® ," http://www.hocoma.com/products/armeo/armeopower
[12] Commercial Product, "Shoulder CPM® ," http://www.kinexmedical.com/shoulder.html
[13] Otten, A., Voort, C., Stienen, A., Aarts, R., van Asseldonk, E., & van der Kooij, H.
(2015). LIMPACT: a hydraulically powered self-aligning upper limb
exoskeleton. IEEE/ASME transactions on mechatronics, 20(5), 2285-2298.
[14] Kim, B., & Deshpande, A. D. (2015, August). Controls for the shoulder
mechanism of an upper-body exoskeleton for promoting scapulohumeral rhythm.
110
In 2015 IEEE International Conference on Rehabilitation Robotics (ICORR) (pp.
538-542). IEEE.
[15] Carignan, C., & Liszka, M. (2005, July). Design of an arm exoskeleton with
scapula motion for shoulder rehabilitation. In ICAR'05. Proceedings., 12th
International Conference on Advanced Robotics, 2005. (pp. 524-531). IEEE.
[16] Klein, J., Spencer, S., Allington, J., Bobrow, J. E., & Reinkensmeyer, D. J. (2010).
Optimization of a parallel shoulder mechanism to achieve a high-force, low-mass,
robotic-arm exoskeleton. IEEE Transactions on Robotics, 26(4), 710-715.
[17] Pehlivan, A. U., Sergi, F., & O'Malley, M. K. (2015). A subject-adaptive controller
for wrist robotic rehabilitation. IEEE/ASME Transactions on Mechatronics, 20(3),
1338-1350.
[18] 謝祥謙,中華民國一○四年。「可穿戴式上肢外骨骼機構之最佳化設計」,成
功大學機械工程學系碩士學位論文。
[19] Cempini, M., Cortese, M., & Vitiello, N. (2015). A powered finger–thumb
wearable hand exoskeleton with self-aligning joint axes. IEEE/ASME
Transactions on Mechatronics, 20(2), 705-716.
[20] Perry, J. C., & Rosen, J. (2006, February). Design of a 7 degree-of-freedom upperlimb
powered exoskeleton. In The First IEEE/RAS-EMBS International
Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob
2006.(pp. 805-810). IEEE.
[21] Mao, Y., & Agrawal, S. K. (2012). Design of a cable-driven arm exoskeleton
(CAREX) for neural rehabilitation. IEEE Transactions on Robotics, 28(4), 922-
931.
[22] Chen, S. H., Lien, W. M., Wang, W. W., Lee, G. D., Hsu, L. C., Lee, K. W., ... &
Luh, J. J. (2016). Assistive Control System for Upper Limb Rehabilitation Robot.
[23] Huang, J., Huo, W., Xu, W., Mohammed, S., & Amirat, Y. (2015). Control of
upper-limb power-assist exoskeleton using a human-robot interface based on
motion intention recognition. IEEE Transactions on Automation Science and
Engineering, 12(4), 1257-1270.
[24] Schiele, A., & van der Helm, F. C. (2006). Kinematic design to improve
ergonomics in human machine interaction. IEEE Transactions on Neural Systems
and Rehabilitation Engineering, 14(4), 456-469.
[25] Stienen, A. H., Hekman, E. E., Van Der Helm, F. C., & Van Der Kooij, H. (2009).
Self-Aligning Exoskeleton Axes Through Decoupling of Joint Rotations and
Translations. IEEE Transactions on Robotics, 25(3), 628-633.
[26] Jarrassé, N., & Morel, G. (2012). Connecting a human limb to an exoskeleton.
IEEE Transactions on Robotics, 28(3), 697-709.
[27] Cempini, M., De Rossi, S. M. M., Lenzi, T., Vitiello, N., & Carrozza, M. C. (2013).
111
Self-alignment mechanisms for assistive wearable robots: a kinetostatic
compatibility method. IEEE Transactions on Robotics, 29(1), 236-250.
[28] Jarrassé, N., Proietti, T., Crocher, V., Robertson, J., Sahbani, A., Morel, G., &
Roby-Brami, A. (2014). Robotic exoskeletons: a perspective for the rehabilitation
of arm coordination in stroke patients. Frontiers in human neuroscience, 8, 947.
[29] Home after a stroke, "The Flexion Synergy Can Be Good". January 3, 2012.
[Online].Available:http://homeafterstroke.blogspot.tw/2012/01/the-flexionsynergy-
is-good-and-bad.html [Accessed: Aug. 23, 2016].
[30] Teasell, R., Hussein, N. (2014). Stroke Rehabilitation Clinician Handbook,
EBRSR.com.
[31] Juan Arenillas, "Entrenamiento Total". (2011). [Online]. Available:
http://entrenamiento-total.com/entrenamiento-de-carga-vectorial-ecv/ [Accessed:
Aug. 23, 2016].
[32] Morphopedics, "Physical Therapy Management Of Supraspinatus Tendinitis".
[Online]. Available:http://morphopedics.wikidot.com/physical-therapymanagement-
of-suparaspinatus-tendinitis [Accessed: Aug. 23, 2016].
[33] OT Assessment and Intervention, "Normal ROM". [Online]. Available:
https://assessmentandinterventiongroup8.wordpress.com/rom/normal-rom/
[Accessed: Aug. 23, 2016].
[34] 朱證裕,中華民國一○四年。「發展一撓性仿人腕驅動器於親和人機互動」,
成功大學機械工程學系碩士學位論文。
[35] Haydon Kerk Motion Solutioins, Inc, 2011, "Hybrid Linear Actuators," Waterbury,
USA, Available: http://www.haydonkerk.com
[36] Todhunter, I. (1863). Spherical Trigonometry, for the Use of Colleges and Schools:
With Numerous Examples. Macmillan.
[37] Ouerfelli, M., & Kumar, V. (1994). Optimization of a spherical five-bar parallel
drive linkage. Journal of mechanical design, 116(1), 166-173.
[38] 陳克豪,中華民國九十四年。「演生對稱耦桿點曲線之球面四連桿機構三角
形列線圖集之建立與應用」,成功大學機械工程學系博士學位論文。
[39] Murray, A., & Larochelle, P. (1998). A classification scheme for planar 4r,
spherical 4r, and spatial rccc linkages to facilitate computer animation. ASME
Paper No. DETC98/MECH-5887.
[40] Cleghorn, W. L. (2005). Mechanics of machines. Oxford University Press, USA.
[41] Wu, G., Van der Helm, F. C., Veeger, H. D., Makhsous, M., Van Roy, P., Anglin,
C., ... & Werner, F. W. (2005). ISB recommendation on definitions of joint
coordinate systems of various joints for the reporting of human joint motion—Part
II: shoulder, elbow, wrist and hand. Journal of biomechanics, 38(5), 981-992.
[42] Culham, E., & Peat, M. (1993). Functional anatomy of the shoulder
112
complex.Journal of Orthopaedic & Sports Physical Therapy, 18(1), 342-350.
[43] Kingston, B. (2000). Understanding joints: a practical guide to their structure and
function. Nelson Thornes.
[44] Palmer, M. L., Epler, M. E., & Epler, M. F. (1998). Fundamentals of
musculoskeletal assessment techniques. Lippincott Williams & Wilkins.
[45] Ludewig, P. M., Phadke, V., Braman, J. P., Hassett, D. R., Cieminski, C. J., &
LaPrade, R. F. (2009). Motion of the shoulder complex during multiplanar humeral
elevation. The Journal of Bone & Joint Surgery, 91(2), 378-389.
[46] Denavit, J. (1955). A kinematic notation for lower-pair mechanisms based on
matrices. Trans. of the ASME. Journal of Applied Mechanics, 22, 215-221.
[47] Chandler, R. F., Clauser, C. E., McConville, J. T., Reynolds, H. M., & Young, J.
W. (1975). Investigation of inertial properties of the human body (No. AMRL-TR-
74-137). AIR FORCE AEROSPACE MEDICAL RESEARCH LAB WRIGHTPATTERSON
AFB OH.
校內:2021-10-08公開