| 研究生: |
楊晏甄 Yang, Yen-Chen |
|---|---|
| 論文名稱: |
新穎結構材料金屬硫氧化物之合成與鑑定 Synthesis and Characterization of Novel Structure Material of Metal Oxychalcogenide |
| 指導教授: |
許桂芳
Hsu, Kuei-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 硫氧化合物 、混和型陰離子 、團簇 、寬能隙 、非線性光學物質 |
| 外文關鍵詞: | oxychalcogenide, mix-anions, cluster, wide band gap, nonlinear optical materials |
| 相關次數: | 點閱:75 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以固態熔融反應輔以助熔劑長晶法合成出具新穎團簇結構的硫氧族化合物Ba-A-Ga-S-O, A = K (1), A = Cs(2)。 Ba-A-Ga-S-O, A = K (1), A = Cs(2) 晶體之空間群(space group)及晶系(crystal system)為Hexagonal P6 ̅2m,屬於非對稱中心結構(noncentro-symmetric)金屬硫氧族化合物,單位晶格軸長分別為a = 16.9125(9) Å, c = 9.1109(0) Å。結構骨架是由GaO4 與GaSO3 四面體以共用角方式相互鍵結,形成[Ga6S3O13] 與[Ga6S3O19] 兩種巨大三角形團簇(cluster)。此系統通光範圍約為2.5 μm – 12.5 μm,在紅外光區有良好的穿透度,能隙測得皆達3.87 eV以上,可能代表高的光破壞閥值,應用在高功率的雷射光源上較不易損壞。在螢光性質部分,室溫情況下以激發光波長325 nm 照射放出黃綠光,其高能隙及放光性質有潛力可應用在LED及其他光感測設備上。
Two oxychalcogenides Ba3Ga6AxS2O10.0 (A=K, x=0.05, A=Cs, x=0.24) was prepared by the KBr/CsI flux at high temperature. Both compounds crystallize in the same space group of P6 ̅2m with parameters a = 16.9 Å and c = 9.1 Å. The structure adopts a new three-dimensional framework which is composed of two kinds of triangle cluster Ga6S3O13 and Ga6S3O19 with A+ cations filling in the space. The compounds feature wide band gaps of 3.87 and 3.90 eV. and good photoluminescence (PL) behaviors emitted in green light.
In order to the mix-anions framework, These two oxychalcogenides has distorted clusters with wide band gap and high intensity yellow-green luminescence. The advantage of the wide band gap mean that this compound has the potential application as nonlinear optical (NLO) materials and semiconductors. In addition, the PL properties of two compounds are investigated at room temperature exhibits a strong yellow-green emission band at 540 nm under excitation wavelength of 325 nm. It is similar to Ga2O3, and Ga2S3 and has the potential application in gas sensors and photodetector.
1. Sambrook, T.; Smura, C. F.; Clarke, S. J.; Ok, K. M.; Halasyamani, P. S., Structure and Physical Properties of the Polar Oxysulfide CaZnOS. Inorganic Chemistry 2007, 46 (7), 2571-2574.
2. Smyth-Boyle, D.; Govender, K.; Hazelton, P.; O’Brien, P., Proceedings of the 203rd Meeting of the Electrochemical Society. 2003.
3. Xia, Y.; Huang, F.; Wang, W.; Wang, A.; Shi, J., Luminescence properties of Cu-activated BaZnOS phosphor. Solid State Sciences 2007, 9 (11), 1074-1078.
4. Li, L.; Wong, K.-L.; Li, P.; Peng, M., Mechanoluminescence properties of Mn2+-doped BaZnOS phosphor. Journal of Materials Chemistry C 2016, 4 (35), 8166-8170.
5. Calvagna, F.; Zhang, J.; Li, S.; Zheng, C., Synthesis and Structural Analysis of Ba3V2O3S4. Chemistry of Materials 2001, 13 (2), 304-307.
6. Nicoud, S.; Mentré, O.; Kabbour, H., The Ba10S(VO3S)6 Oxysulfide: One-Dimensional Structure and Mixed Anion Chemical Bonding. Inorganic Chemistry 2019, 58 (2), 1349-1357.
7. Blandy, J. N.; Liu, S.; Smura, C. F.; Cassidy, S. J.; Woodruff, D. N.; McGrady, J. E.; Clarke, S. J., Synthesis, Structure, and Properties of the Layered Oxide Chalcogenides Sr2CuO2Cu2S2 and Sr2CuO2Cu2Se2. Inorganic Chemistry 2018, 57 (24), 15379-15388.
8. Smura, C. F.; Parker, D. R.; Zbiri, M.; Johnson, M. R.; Gál, Z. A.; Clarke, S. J., High-Spin Cobalt(II) Ions in Square Planar Coordination: Structures and Magnetism of the Oxysulfides Sr2CoO2Cu2S2 and Ba2CoO2Cu2S2 and Their Solid Solution. Journal of the American Chemical Society 2011, 133 (8), 2691-2705.
9. Zhou, T.; Wang, Y.; Jin, S.; Li, D.; Lai, X.; Ying, T.; Zhang, H.; Shen, S.; Wang, W.; Chen, X., Structures and Physical Properties of Layered Oxyselenides Ba2MO2Ag2Se2 (M = Co, Mn). Inorganic Chemistry 2014, 53 (8), 4154-4160.
10. Zhang, X.-M.; Sarma, D.; Wu, Y.-Q.; Wang, L.; Ning, Z.-X.; Zhang, F.-Q.; Kanatzidis, M. G., Open-Framework Oxysulfide Based on the Supertetrahedral [In4Sn16O10S34]12– Cluster and Efficient Sequestration of Heavy Metals. Journal of the American Chemical Society 2016, 138 (17), 5543-5546.
11. Xia, Y.; Huang, F.; Wang, W.; Wang, Y.; Yuan, K.; Liu, M.; Shi, J., A novel red-emitting Mn-activated BaZnOS phosphor. Optical Materials 2008, 31 (2), 311-314.
12. Broadley, S.; Gál, Z. A.; Corà, F.; Smura, C. F.; Clarke, S. J., Vertex-Linked ZnO2S2 Tetrahedra in the Oxysulfide BaZnOS: a New Coordination Environment for Zinc in a Condensed Solid. Inorganic Chemistry 2005, 44 (24), 9092-9096.
13. Suram, S. K.; Newhouse, P. F.; Gregoire, J. M., High throughput light absorber discovery, part 1: an algorithm for automated tauc analysis. ACS combinatorial science 2016, 18 (11), 673-681.
14. Kitai, A. H., Solid state luminescence: Theory, materials and devices. Springer Science & Business Media: 2012.
15. Boyer, M.; Veron, E.; Becerro, A. I.; Porcher, F.; Suchomel, M. R.; Matzen, G.; Allix, M., BaGa4O7, a new A3BC10O20 crystalline phase: synthesis, structural determination and luminescence properties. CrystEngComm 2015, 17 (32), 6127-6135.
16. Chen, C.; Wu, Y.; Li, R., The development of new NLO crystals in the borate series. Journal of Crystal Growth 1990, 99 (1, Part 2), 790-798.
17. Vı́llora, E. G. a.; Atou, T.; Sekiguchi, T.; Sugawara, T.; Kikuchi, M.; Fukuda, T., Cathodoluminescence of undoped β-Ga2O3 single crystals. Solid State Communications 2001, 120 (11), 455-458.
18. Binet, L.; Gourier, D., ORIGIN OF THE BLUE LUMINESCENCE OF β-Ga2O3. Journal of Physics and Chemistry of Solids 1998, 59 (8), 1241-1249.
19. Harwig, T.; Kellendonk, F., Some observations on the photoluminescence of doped β-galliumsesquioxide. Journal of Solid State Chemistry 1978, 24 (3), 255-263.
20. Garcı́a Vı́llora, E.; Hatanaka, K.; Odaka, H.; Sugawara, T.; Miura, T.; Fukumura, H.; Fukuda, T., Luminescence of undoped β-Ga2O3 single crystals excited by picosecond X-ray and sub-picosecond UV pulses. Solid State Communications 2003, 127 (5), 385-388.
21. Liu, H. F.; Antwi, K. K. A.; Yakovlev, N. L.; Tan, H. R.; Ong, L. T.; Chua, S. J.; Chi, D. Z., Synthesis and Phase Evolutions in Layered Structure of Ga2S3 Semiconductor Thin Films on Epiready GaAs (111) Substrates. ACS Applied Materials & Interfaces 2014, 6 (5), 3501-3507.
22. Yoo, J.-H.; Rafique, S.; Lange, A.; Zhao, H.; Elhadj, S., Lifetime laser damage performance of β-Ga2O3 for high power applications. APL Materials 2018, 6 (3), 036105.
23. Ho, C.-H.; Tseng, C.-Y.; Tien, L.-C., Thermoreflectance characterization of β-Ga2O3 thin-film nanostrips. Opt. Express 2010, 18 (16), 16360-16369.
24. Liang, C. H.; Meng, G. W.; Wang, G. Z.; Wang, Y. W.; Zhang, L. D.; Zhang, S. Y., Catalytic synthesis and photoluminescence of β-Ga2O3 nanowires. Applied Physics Letters 2001, 78 (21), 3202-3204.
25. Aono, T.; Kase, K., Green photoemission of a-Ga2S3 crystals. Solid State Communications 1992, 81 (4), 303-305.
26. Von Behren, J.; Wolkin-Vakrat, M.; Jorné, J.; Fauchet, P. M., Correlation of Photoluminescence and Bandgap Energies with Nanocrystal Sizes in Porous Silicon. Journal of Porous Materials 2000, 7 (1), 81-84.
27. Harwig, T.; Kellendonk, F.; Slappendel, S., The ultraviolet luminescence of β-galliumsesquioxide. Journal of Physics and Chemistry of Solids 1978, 39 (6), 675-680.
28. Passlack, M.; Schubert, E. F.; Hobson, W. S.; Hong, M.; Moriya, N.; Chu, S. N. G.; Konstadinidis, K.; Mannaerts, J. P.; Schnoes, M. L.; Zydzik, G. J., Ga2O3 films for electronic and optoelectronic applications. Journal of Applied Physics 1995, 77 (2), 686-693.
29. Higashiwaki, M.; Murakami, H.; Kumagai, Y.; Kuramata, A., Current status of Ga2O3power devices. Japanese Journal of Applied Physics 2016, 55 (12), 1202A1.
30. Wong, M. H.; Nakata, Y.; Kuramata, A.; Yamakoshi, S.; Higashiwaki, M., Enhancement-mode Ga2O3 MOSFETs with Si-ion-implanted source and drain. Applied Physics Express 2017, 10 (4), 041101.
31. Higashiwaki, M.; Sasaki, K.; Murakami, H.; Kumagai, Y.; Koukitu, A.; Kuramata, A.; Masui, T.; Yamakoshi, S., Recent progress in Ga2O3power devices. Semiconductor Science and Technology 2016, 31 (3), 034001.
32. Afzal, A., β-Ga2O3 nanowires and thin films for metal oxide semiconductor gas sensors: Sensing mechanisms and performance enhancement strategies. Journal of Materiomics 2019, 5 (4), 542-557.
33. Pratiyush, A. S.; Krishnamoorthy, S.; Muralidharan, R.; Rajan, S.; Nath, D. N., 16 - Advances in Ga2O3 solar-blind UV photodetectors. In Gallium Oxide, Pearton, S.; Ren, F.; Mastro, M., Eds. Elsevier: 2019; pp 369-399.