| 研究生: |
黃偉恩 Huang, Way-en |
|---|---|
| 論文名稱: |
橢球堆積模擬 Ellipsoid packing simulations |
| 指導教授: |
李宇欣
Lee, Yu-sin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 橢球堆積 、正球堆積 、模擬退火法 、顆粒堆積 、蒙特卡羅法 |
| 外文關鍵詞: | simulated annealing, Monte-Carlo method, particle packing, sphere packing, ellipsoid packing |
| 相關次數: | 點閱:70 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以蒙特卡羅法為模擬顆粒群體行為的基礎,並配合模擬退火法作為壓密機制的核心策略,建構了橢球隨機緊密堆積的模擬系統。
除了基本的壓密機制外,本研究並設計了兩種策略以在演算過程中儘量維持顆粒在試體中排列的均勻度。一項策略為「顆粒優先抽取序列」,可使試體中鬆散區域的顆粒有較高機率被調整姿態和位置;另一項策略為「上下移動最大步幅對調」,可使試體中緊密區域的顆粒往鬆散區域移動。
針對數百顆、任意形狀和大小的橢球群,本系統可產生密度甚高的堆積試體。其中正球隨機堆積平均密度曾達73.19%,超過已知文獻,接近體心、面心堆積的74.05%。系統模擬顆粒形狀近似鋼珠、M&M’s巧克力、豐浦標準砂等堆積時,其試體所量得的密度均超過真實實驗試體。
研究觀察到極緊密的堆積試體中,接觸數分布狀況呈現雙峰曲線,是其他文獻中未見到之現象。
顆粒形狀一直是影響堆積密度的重要因子。本研究觀察到稍微偏離正球形的橢球,其堆積密度顯著上升,而偏離程度超過某一界線後開始下降,此結論與Donev[7]一致。在各種形狀的單一種類堆積模擬中,發現三軸長0.427、0.315、0.263的形狀可以達到最高的密度。該試體經300萬回合的搖晃後,密度可達73.11%。在平均接觸數方面,研究亦發現以正球形為最低,形狀偏離正球形即顯著上升。
This thesis presents a Monte Carlo-based simulation method for the dense packing of 3-dimensional ellipsoids. After generating a container and a set of ellipsoidal particles, the system repeatedly adjusts the locations and attitudes of the particles, one at a time, with a method derived from the simulated annealing heuristic.
Maintaining homogeneity is crucial for a set of ellipsoids to reach high density in a simulation, and two strategies are developed for this purpose. The simulation process uses a priority list such that particles located at looser areas are given higher probability to be chosen as the next one to be adjusted. The list is maintained with an effective and efficient method so that it always reflects changes in the particle set. Another strategy is to reverse the condensation direction for a few iterations once in a while, to un-lock dense pockets.
This work resulted in a simulation system that is able to pack several hundred particles into very high density. Experiments with identical spheres reach a density of 73.19% approaches the theoretical bound of 74.05%, and is significantly higher than any published simulation or lab result. Shapes mimicing M&M’s milk chocolate and Toyoura sand also exceeded those seen in the literature. Extensive computational testing indicated that the contact number distribution becomes double-peaked at high densities, which has never been reported in the literature.
Using this system as a tool, we investigated how the shape affects packing among uniform particles. We observed that density is lowest with spheres, increases rapidly when the ellopsoids deviate from the sphere, and decreases again when shapes become extreme. Average contact number also follows a similar trend. These results agree with those of Donev[7].
1. Simo Siiri, J.Y., Particle packing simulations based on Newtonian mechanics. Powder Technology, 2007. 174: p. 82-92.
2. Aleksandar Donev, S.T., Frank H. Stillinger, Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. I. Algorithmic details. Journal of Computational Physics, 2005. 202: p. 737-764.
3. L.F. Liu, Z.P.Z., A.B. Yu, Dynamic simulation of the centripetal packing of mono-sized spheres. Physica A, 1999. 268: p. 433-453.
4. R. Y. Yang, R.P.Z., and A. B. Yu, Computer simulation of the packing of fine particles. Physical Review E, 2000. 62: p. 3900-3908.
5. Boris D. Lubaehevsky, F.H.S., Geometric Properties of Random Disk Packings. Journal of Statistical Physics, 1990. 60: p. 561-583.
6. Boris D. Lubachevsky, F.H.S., and Elliot N. Pinson, Disks vs. Spheres: Contrasting Properties of Random Packings. Journal of Statistical Physics, 1991. 64: p. 501-524.
7. Aleksandar Donev, I.C., David Sachs, Evan A. Variano, Frank H. Stillinger, RobertConnelly, Salvatore Torquato, P. M. Chaikin, Improving the Density of Jammed Disordered Packings Using Ellipsoids. Science, 2004. 303: p. 990-993.
8. D. He, N.N.E., and L. Cai, Computer simulation of random packing of unequal particles. Physical Review E, 1999. 60: p. 7098-7104.
9. Konstantin Sobolev, A.A., The development of a simulation model of the dense packing of large particulate assemblies. Powder Technology, 2004. 141: p. 155-160.
10. Adil Amirjanov, K.S., Optimization of a computer simulation model for packing of concrete aggregates. Particulate Science and Technology, 2008. 26: p. 380-395.
11. S. R. Williams, A.P.P., Random packings of spheres and spherocylinders simulated by mechanical contraction. Physical Review E, 2003. 67.
12. Smith, L., Monte Carlo simulation of particle behaviour. Metal Powder, 2001: p. 32-35.
13. Charlles R.A. Abreu, F.W.T., Marcelo Castier, Influence of particle shape on the packing and on the segregation of spherocylinders via Monte Carlo simulations. Powder Technology, 2003. 134: p. 167-180.
14. S. Re´mond, J.L.G., Modelling of granular mixtures placing. Comparison between a 3D full-digital model and a 3D semi-digital model. Powder Technology, 2004. 145: p. 51-61.
15. R. Caulkin, A.A., M. Fairweather, X. Jia, R.A. Williams, An investigation of sphere packed shell-side columns using a digital packing algorithm. Computers and Chemical Engineering 2007. 30(6-7): p. 1178-1188.
16. 楊承道, 三維顆粒堆積模擬. 國立成功大學土木工程學系碩士論文, 1999.
17. 李怡寬, 三維正球緊密堆積模擬. 國立成功大學土木工程學系碩士論文, 2003.
18. W.I. Salvat, N.J.M., G.F. Barreto, O.M. Martı´nez, An algorithm to simulate packing structure in cylindrical containers. Catalysis Today, 2005. 107-108: p. 513-519.
19. Frazao E.B., S.N.C., The influence of the shape of the coarse aggregate on some hydraulic concrete properties. Bulletin of Engineering Geology and the Environment, 1984. 30: p. 221-224.
20. Fernlund, J.M.R., Image analysis method for determining 3-D shape of coarse aggregate. Cement and Concrete Research, 2005. 35: p. 1629-1637.
21. Barret, P.J., The shape of rock particles, a critical review. Sedimentology, 1980. 27: p. 291-303.
22. C.F. Mora, A.K.H.K., Sphericity, shape factor, and convexity measurement of coarse aggregate for concrete using digital image processing. Cement and Concrete Research, 2000. 30: p. 351-358.
23. Zingg, T., Beitrge zur Schotteranalyse. Schweiz, mineral. petrog. Mitt., 1935. 15(38-140).
24. Simon J. Blott, K.P., Particle shape: a review and new methods of characterization and classification. Sedimentology, 2008. 55: p. 31-63.
25. N.J.A.Sloane, The packing of spheres. Scientific American, 1984. 250: p. 116-125.
26. Aleksandar Donev, F.H.S., P. M. Chaikin, SalvatoreTorquato, Unusually dense crystal packings of ellipsoids. Physical Review Letters, 2004. 92.
27. Aleksandar Donev, R.C., Frank H. Stillinger, and Salvatore Torquato, Underconstrained jammed packings of nonspherical hard particles: Ellipses and ellipsoids. Physical Review E, 2007. 75.
28. Aleksandar Donev, R.C., Frank H. Stillinger, Salvatore Torquato, Underconstrained jammed packings of nonspherical hard particles Ellipses and ellipsoids. Physical Review E, 2007. 75: p. 1~32.
29. Torquato, S., T.M. Truskett, and P.G. Debenedetti, Is Random Close Packing of Spheres Well Defined? Physical Review Letters, 2000. 84(10): p. 2064.
30. Liu, L., Dynamic simulation of powder compact by random packing of monosized and polydisperse particles. Journal of Materials Science Letters, 2000.
31. Re´mond, S., A 3D semi-digital model for the placing of granular materials. Powder Technology 148 (2004) 56–59, 2004.
32. Kirkpatrick, S., C.D. Gelatt, and M.P. Vecchi, Optimization by Simulated Annealing. Science, 1983. 220: p. 671-680.
33. Schlick, T., Molecular Modeling and Simulation: An Interdisciplinary Guide. Interdisciplinary Applied Mathematics series, vol. 21. Springer: New York, NY, USA. ISBN 0-387-95404-X., 2002. 21: p. 272-6.
34. Conway, J.H. & Sloane, N.J.H. (1998) "Sphere Packings, Lattices and Groups" (Third Edition). ISBN 0-387-98585-9
35. Goto Satoshi, P.C., Tatsuoka Fumio, Molenkamp Frans Qyuality of The Lubrication Layer Used In Element Tests On Granular Materials. Soils and Foundations, 1993. 33(2): p. 47-59.
36. Cho, G.-C., Particle Shape Effects on Packing Density, Stiffness,and Strength: Natural and Crushed Sands. Journal of Geotechnical and Geoenvironmental Engineering, 2006.
37. M.N. Bouquety, Y.D., L. Barcelo, F. de Larrard, B. Clavaud, Experimental study of crushed aggregate shape. Construction and Building Materials, 2007. 21: p. 865-872.
38. 汪燮之, 實用土木工程施工學. 大中國圖書公司, 1999.
39. O'Rourke, J., Finding minimal enclosing boxes International Journal of Parallel Programming, 1985. 14: p. 183-199.
40. C. K. Chan, S.T.T., Determination of the minimum bounding box of an arbitrary solid: an iterative approach Computers & Structures, 2001. 79(15): p. 1433-1449.