| 研究生: |
陳怡貞 Chen, Yi-Zhen |
|---|---|
| 論文名稱: |
利用耦合矩陣法改善類表面電漿在微波頻段的頻率響應 The improvement in microwave frequency response of surface-plasmon-like waves by coupling matrix methodology |
| 指導教授: |
陳宜君
Chen, Yi-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2009 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 表面電漿 、耦合矩陣 、微波 |
| 外文關鍵詞: | surface plasmon, coupling matrix, microwave |
| 相關次數: | 點閱:114 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表面電漿可以克服繞射極限,所以在頻譜的空間解析度上就會比較高,因此可以有顯微與微影方面等的應用。在本研究中,我們藉由微波在微結構的金屬表面上所產生的類表面電漿,可以達到比波長更小的解析度,再利用耦合矩陣的方法來設計共振器之間的耦合係數,以達到傳輸零點,進而增加傳輸頻段截止頻率處的陡峭程度。在我們的實驗中,利用光打在一個上下各有一對凹槽的金屬表面圍繞著一個次波長的狹縫時,光會與金屬表面電漿耦合,此時將會有一個很大的光學穿透度,也只會讓單一頻率的光波通過。單一的狹縫形同表面電漿的共振器,而藉由改變共振器之間的參數如距離、次波長的金屬結構可調整其耦合係數來達到穿透零點。我們的實驗符合模擬與數值分析(耦合矩陣)的結果,三者的帶寬分別為0.16GHz,0.17GHz,0.17GHz,且皆有很明顯的穿透零點。
Surface plasmon can conquer the diffraction limit, so it has the adtavantages to apply in technology with high spatial resolution, such as microscopy and lithography. In this study, we generate the surface plasmon on the corrugated surface of the metal to improve the resolution beyond the diffraction limits of propagating waves. Moreover, the coupling matrix methodology was introduced to modify transmission spectrum with transmission zeros adjacent to the pass band. The optical transmission through a subwavelength aperture is strongly enhanced when the incident light is resonant with surface plasmons at the corrugated metal structures located nearby. The single slit behaves like a resonator. The coupling coefficients between resonstanors can be controlled by geometrical parameters, such as coupling length and intermediate subwavelength structure. By using coupling matrix methodology, we can adjust the transmission zeros to increase the sharpness near the cutoff frequency. Our experimental results agree with the simulation and the numerical analysis and have clear transmission zeros. The bandwidths of the experimental, simulation, and the numerical spectrum are 0.16 GHz, 0.17 GHz and 0.17GHz, respectively.
1.H. Raether, Surface Plasmons (Springer , New York, 1988).
2.A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, Phys. Reports 408, 131 (2005).
3.D. A. Schultz, Current Opinion in Biotechnology 14, 13 (2003).
4.M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hänsch, Phys. Rev. Lett. 68, 476 (1992); T. J. Silva and S. Schultz, and D. Weller, Appl. Phys. Lett. 65, 658 (1994); Y. K. Kim, P. M. Lundquist, J. A. Helfrich, J. M. Mikrut, G. K. Wong, P. R. Auvil, and J. B. Ketterson, Appl. Phys. Lett. 66, 3407 1995); M. Ashino, and M. Ohtsu, Appl. Phys. Lett. 72, 1299 (1998); O. Sqalli, I. Utke, P. Hoffmann, and F. Marquis-Weible, J. Appl. Phys. 92, 1078 (2002).
5.D. P. Tsai, and W. C. Lin, Appl. Phys. Lett. 77, 1413 (2000); J. Tominoga, J. Kim, H. Fuji, D. Buchel, T. Kikukawa, L. Men, H. Fuckuda, A. Sato, T. Nakano, Tachibana, Y. Yamakawa, M. Kumagai, T. Fuckaya, and N. Atoda, Jpn. J. Appl. Phys. 40, 1831 (2001); W. C. Liu , C. Y. Wen, K. H. Chen, W. C. Lin, and D. P. Tsai, Appl. Phys. Lett. 78, 685 (2001). P. Paruch, T. Tybell, and J.-M. Triscone, Appl. Phys. Lett. 79, 530 (2001).
6.C. Haynes, and R. P. Van Duyne, J. Phys. Chem. B 107, 7426(2003); M. Moskovits, J. Chem. Phys. 69, 4159 (1978); D. L. Jeanmaire, and R. P. Van Duyne, J. Electroanal. Chem.84, 1 (1977).
7.D. E. Grupp, H. J. Lezec, T. Thio, T. W. Ebbesen, Adv. Materials 11, 860 (1999); S. Sun, G. J. Leggett, Nano Lett. 4, 1381 (2004); W.Srituravanich, N. Fang, S. Durant, M. Ambati, C. Sun, and X. Zhang, J. Vacuum Science & Tech. B 22, 3475 (2004).
8.O.Stenzel, A. Stendal, K. Voigtsberger, and C. von Borczyskowski, Solar Energy Materials and Solar Cells 37, 337 (1995); M. Westphalen, U. Kreibig, J. Rostalski, H. LuK th, and D. Meissner, Solar Energy Materials and Solar Cells 61, 97 (2000).
9.C. Nylander, B. Liedberg, and T. Lind, Sens. & Actuators 3, 79 (1982-1983); W. A. Challener, R. R. Ollman, and K. K. Kam, Sens. & Actuators 56, 254 (1999); H. Kano, and S. Kawata, Jpn. J. Appl. Phys. I, 34, 331 (1995); K. Matsubara, S. Kawata, and S. Minami, Appl. Opt. 27, 1160 (1998).
10.I. Pockrand, J. D. Swalen, R. Santo, A. Brillante, and M. R. Philpott, J. Chem. Phys. 69, 4001 (1978); W. P. Chen, and J. M. Chen, J. Opt. Soc. Am. 71, 189 (1981); H. de Bruijn, R. Kooyman, and J. Greve, Appl. Opt. 29, 1974 (1990); H. Kano, and S. Kawata, Jpn. J. Appl. Phys. 34, 331 (1995).
11.J. R. Sambles , Nature (London) 391, 641 (1998) ; P R. Villeneuve, Phys. World 11, 28 (1998).
12.R.F.Harrington, Field Computation by Moment Methods (Mac Millan , NewYork , 1968).
13.Y.Takakura,Optical Resonance in a Narrow Slit in a Thick Metallic Screen,PRL VOLUME 86,NUMBER 24,5601(2000)
14.邱國斌、蔡定平 , 物理雙月刊(廿八卷二期)2006年 4月
15.吳民耀、劉威志 , 物理雙月刊(廿八卷二期)2006年 4月
16.W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, Phys. Rev. B 59, 12661 (1998).
17.J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
18.General Coupling Matrix Synthesis Methods for Chebyshev Filtering Functions ,Richard J. Cameron, Senior Member, IEEE IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 4, APRIL 1999
19.童創明,梁建剛 , 電磁場為波技術與天線 , 西北工業大學(2009)
20.Alastair P. Hibbins and J. Roy Sambles , Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate , Appl. Phys. Lett. , Vol.81 , No.24, 9December2002
21.Ikuo Awai, Meaning of Resonator’s Coupling Coefficient in
Bandpass Filter Design , Electronics and Communications in Japan, Part 2, Vol. 89, No. 6, 2006
22.J. B. Pendry, “Intense focusing of light using metals” , in Photonic Crystals and Light Localization in the 21st Century , ed. C. M. Soukoulis , NATO SCIENCE SERIES: C: Mathematical and Physical Sciences , Vol. 563 (Kluwer , Dordrecht ,The Netherlands , 2001).
23.S Anantha Ramakrishna, Physics of negative refractive index materials , Rep. Prog. Phys. 68 (2005)449–521
24.Alastair P. Hibbins, et al, Experimental Verification of Designer Surface Plasmons, Science 308, 670 (2005)
25.J. B. Pendry , et al, Mimicking Surface Plasmons with Structured Surfaces, Science 305,847 (2004)
26.Harry A. Atwater , 電漿子光明之路,科學人 2007年5月,p44-p52
27.A. E. Atia and A. E. Williams , New type of waveguide bandpass filters for satellite transponders , comsat technical review volume 1 number 1 , Fall 1971
28.Pozar, David M , Microwave engineering ,3rd ed. Hoboken, NJ :J. Wiley,c2005
校內:2015-07-02公開