簡易檢索 / 詳目顯示

研究生: 陳怡貞
Chen, Yi-Zhen
論文名稱: 利用耦合矩陣法改善類表面電漿在微波頻段的頻率響應
The improvement in microwave frequency response of surface-plasmon-like waves by coupling matrix methodology
指導教授: 陳宜君
Chen, Yi-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 98
語文別: 中文
論文頁數: 116
中文關鍵詞: 表面電漿耦合矩陣微波
外文關鍵詞: surface plasmon, coupling matrix, microwave
相關次數: 點閱:114下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面電漿可以克服繞射極限,所以在頻譜的空間解析度上就會比較高,因此可以有顯微與微影方面等的應用。在本研究中,我們藉由微波在微結構的金屬表面上所產生的類表面電漿,可以達到比波長更小的解析度,再利用耦合矩陣的方法來設計共振器之間的耦合係數,以達到傳輸零點,進而增加傳輸頻段截止頻率處的陡峭程度。在我們的實驗中,利用光打在一個上下各有一對凹槽的金屬表面圍繞著一個次波長的狹縫時,光會與金屬表面電漿耦合,此時將會有一個很大的光學穿透度,也只會讓單一頻率的光波通過。單一的狹縫形同表面電漿的共振器,而藉由改變共振器之間的參數如距離、次波長的金屬結構可調整其耦合係數來達到穿透零點。我們的實驗符合模擬與數值分析(耦合矩陣)的結果,三者的帶寬分別為0.16GHz,0.17GHz,0.17GHz,且皆有很明顯的穿透零點。

    Surface plasmon can conquer the diffraction limit, so it has the adtavantages to apply in technology with high spatial resolution, such as microscopy and lithography. In this study, we generate the surface plasmon on the corrugated surface of the metal to improve the resolution beyond the diffraction limits of propagating waves. Moreover, the coupling matrix methodology was introduced to modify transmission spectrum with transmission zeros adjacent to the pass band. The optical transmission through a subwavelength aperture is strongly enhanced when the incident light is resonant with surface plasmons at the corrugated metal structures located nearby. The single slit behaves like a resonator. The coupling coefficients between resonstanors can be controlled by geometrical parameters, such as coupling length and intermediate subwavelength structure. By using coupling matrix methodology, we can adjust the transmission zeros to increase the sharpness near the cutoff frequency. Our experimental results agree with the simulation and the numerical analysis and have clear transmission zeros. The bandwidths of the experimental, simulation, and the numerical spectrum are 0.16 GHz, 0.17 GHz and 0.17GHz, respectively.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VI 第一章 緒論 1 第二章 文獻回顧 3 2-1 表面電漿 3 2-1-1 基礎原理簡介 3 2-1-2 TE 模態 4 2-1-3 TM 模態 5 2-1-4 表面電漿共振的LC等效線路 11 2-1-5 微波頻段金屬的類表面電漿效應 12 2-2 單一狹縫的表面電漿特性 14 2-2-1 狹縫中的表面電漿共振 14 2-2-2 凹槽(grooves)對穿透度的影響 15 2-3 耦合矩陣簡介 18 2-3-1 阻抗關係式(耦合係數) 19 2-3-2 耦合係數 23 2-4天線簡介 28 2-4-1 坡印亭定里和坡印亭向量 28 2-4-2 複數形式的坡印亭向量定理---平均能流密度 29 2-4-3 無線電波傳播的基本特性 30 2-4-4 天線基礎知識 34 2-4-5 金屬波導 35 第三章 實驗方法 46 3-1 設計理念與HFSS模擬 46 3-2 天線的製作:TE10 mode為主 49 第四章 實驗結果與討論 55 4-1 頻率與幾何結構的關係 55 4-1-1 改變結構的狹縫寬度(SW)(1 mm-5 mm) 55 4-1-2 改變結構的凹槽深度(d)(3mm-7.5 mm) 62 4-1-3 改變結構的狹縫厚度(st)(26 mm-34 mm) 65 4-2 耦合係數與幾何結構的關係 71 4-2-1 改變左右結構間的距離(p1)(8 mm-12 mm) 71 4-2-2 改變上下結構間的距離(p2)(1 mm-4 mm) 77 4-2-3 在上下兩共振器中填一塊金屬 82 4-3 四狹縫結構利用耦合矩陣法所得之頻譜響應 95 4-3-1 n=1─沿金屬邊從狹縫1到狹縫4的光程~1/4波長 95 4-3-2 n=1─沿金屬邊從狹縫1到狹縫4的光程~1/2波長 97 4-3-3 n=2─沿金屬邊從狹縫1到狹縫4的光程~1/2波長 110 第五章 結論 112 參考文獻 113

    1.H. Raether, Surface Plasmons (Springer , New York, 1988).
    2.A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, Phys. Reports 408, 131 (2005).
    3.D. A. Schultz, Current Opinion in Biotechnology 14, 13 (2003).
    4.M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hänsch, Phys. Rev. Lett. 68, 476 (1992); T. J. Silva and S. Schultz, and D. Weller, Appl. Phys. Lett. 65, 658 (1994); Y. K. Kim, P. M. Lundquist, J. A. Helfrich, J. M. Mikrut, G. K. Wong, P. R. Auvil, and J. B. Ketterson, Appl. Phys. Lett. 66, 3407 1995); M. Ashino, and M. Ohtsu, Appl. Phys. Lett. 72, 1299 (1998); O. Sqalli, I. Utke, P. Hoffmann, and F. Marquis-Weible, J. Appl. Phys. 92, 1078 (2002).
    5.D. P. Tsai, and W. C. Lin, Appl. Phys. Lett. 77, 1413 (2000); J. Tominoga, J. Kim, H. Fuji, D. Buchel, T. Kikukawa, L. Men, H. Fuckuda, A. Sato, T. Nakano, Tachibana, Y. Yamakawa, M. Kumagai, T. Fuckaya, and N. Atoda, Jpn. J. Appl. Phys. 40, 1831 (2001); W. C. Liu , C. Y. Wen, K. H. Chen, W. C. Lin, and D. P. Tsai, Appl. Phys. Lett. 78, 685 (2001). P. Paruch, T. Tybell, and J.-M. Triscone, Appl. Phys. Lett. 79, 530 (2001).
    6.C. Haynes, and R. P. Van Duyne, J. Phys. Chem. B 107, 7426(2003); M. Moskovits, J. Chem. Phys. 69, 4159 (1978); D. L. Jeanmaire, and R. P. Van Duyne, J. Electroanal. Chem.84, 1 (1977).
    7.D. E. Grupp, H. J. Lezec, T. Thio, T. W. Ebbesen, Adv. Materials 11, 860 (1999); S. Sun, G. J. Leggett, Nano Lett. 4, 1381 (2004); W.Srituravanich, N. Fang, S. Durant, M. Ambati, C. Sun, and X. Zhang, J. Vacuum Science & Tech. B 22, 3475 (2004).
    8.O.Stenzel, A. Stendal, K. Voigtsberger, and C. von Borczyskowski, Solar Energy Materials and Solar Cells 37, 337 (1995); M. Westphalen, U. Kreibig, J. Rostalski, H. LuK th, and D. Meissner, Solar Energy Materials and Solar Cells 61, 97 (2000).
    9.C. Nylander, B. Liedberg, and T. Lind, Sens. & Actuators 3, 79 (1982-1983); W. A. Challener, R. R. Ollman, and K. K. Kam, Sens. & Actuators 56, 254 (1999); H. Kano, and S. Kawata, Jpn. J. Appl. Phys. I, 34, 331 (1995); K. Matsubara, S. Kawata, and S. Minami, Appl. Opt. 27, 1160 (1998).
    10.I. Pockrand, J. D. Swalen, R. Santo, A. Brillante, and M. R. Philpott, J. Chem. Phys. 69, 4001 (1978); W. P. Chen, and J. M. Chen, J. Opt. Soc. Am. 71, 189 (1981); H. de Bruijn, R. Kooyman, and J. Greve, Appl. Opt. 29, 1974 (1990); H. Kano, and S. Kawata, Jpn. J. Appl. Phys. 34, 331 (1995).
    11.J. R. Sambles , Nature (London) 391, 641 (1998) ; P R. Villeneuve, Phys. World 11, 28 (1998).
    12.R.F.Harrington, Field Computation by Moment Methods (Mac Millan , NewYork , 1968).
    13.Y.Takakura,Optical Resonance in a Narrow Slit in a Thick Metallic Screen,PRL VOLUME 86,NUMBER 24,5601(2000)
    14.邱國斌、蔡定平 , 物理雙月刊(廿八卷二期)2006年 4月
    15.吳民耀、劉威志 , 物理雙月刊(廿八卷二期)2006年 4月
    16.W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, Phys. Rev. B 59, 12661 (1998).
    17.J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
    18.General Coupling Matrix Synthesis Methods for Chebyshev Filtering Functions ,Richard J. Cameron, Senior Member, IEEE IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 4, APRIL 1999
    19.童創明,梁建剛 , 電磁場為波技術與天線 , 西北工業大學(2009)
    20.Alastair P. Hibbins and J. Roy Sambles , Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate , Appl. Phys. Lett. , Vol.81 , No.24, 9December2002
    21.Ikuo Awai, Meaning of Resonator’s Coupling Coefficient in
    Bandpass Filter Design , Electronics and Communications in Japan, Part 2, Vol. 89, No. 6, 2006
    22.J. B. Pendry, “Intense focusing of light using metals” , in Photonic Crystals and Light Localization in the 21st Century , ed. C. M. Soukoulis , NATO SCIENCE SERIES: C: Mathematical and Physical Sciences , Vol. 563 (Kluwer , Dordrecht ,The Netherlands , 2001).
    23.S Anantha Ramakrishna, Physics of negative refractive index materials , Rep. Prog. Phys. 68 (2005)449–521
    24.Alastair P. Hibbins, et al, Experimental Verification of Designer Surface Plasmons, Science 308, 670 (2005)
    25.J. B. Pendry , et al, Mimicking Surface Plasmons with Structured Surfaces, Science 305,847 (2004)
    26.Harry A. Atwater , 電漿子光明之路,科學人 2007年5月,p44-p52
    27.A. E. Atia and A. E. Williams , New type of waveguide bandpass filters for satellite transponders , comsat technical review volume 1 number 1 , Fall 1971
    28.Pozar, David M , Microwave engineering ,3rd ed. Hoboken, NJ :J. Wiley,c2005

    無法下載圖示 校內:2015-07-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE