簡易檢索 / 詳目顯示

研究生: 趙書昕
Chao, Shu-Hsin
論文名稱: PPARγ在主要胰島素反應組織中對於調控胰島素敏感性的角色
The role of PPARγ in the regulation of insulin sensitivity in major insulin-responsive tissues
指導教授: 蔡曜聲
Tsai, Yau-Sheng
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 72
中文關鍵詞: PPARγThiazolidinediones (TZDs)胰島素敏感性胰島素反應組織
外文關鍵詞: PPARγ, Thiazolidinediones (TZDs), insulin sensitivity, insulin-responsive tissues  
相關次數: 點閱:67下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第二型糖尿病的發生目前已知是多個胰島素反應組織,如脂肪、肝臟和肌肉等組織出現胰島素抗性所導致。Thiazolidinediones (TZDs)是一類化學合成的過氧化體增生受器 (peroxisome proliferator-activated receptor γ, PPARγ) 高親和性配體,目前被用來做為治療第二型糖尿病的藥物,具有降低全身性胰島素阻抗性及降血糖之效用。TZDs 的治療效果可能是源自於其對一個或多個組織中PPARγ作用後之結果。然而, PPARγ對於調控不同組織的胰島素敏感性之角色尚未完全釐清。因此,我們利用實驗室已建構的PPARγ低表達量小鼠 (PpargC/- mice),來探討在一般餵食、高脂肪餵食及TZD給予之下, PPARγ調控不同組織的胰島素敏感性的角色。在我們之前的研究發現,PPARγ低表達量小鼠在副睪旁脂肪組織有脂肪缺失的現象,且伴隨著高脂血症及全身性胰島素抗性。因此,我們假設PPARγ的缺失會造成副睪旁脂肪組織中基因表現受損,並對胰島素出現抗性,進而導致全身性的胰島素抗性。首先,我們發現PPARγ低表達量小鼠在一般餵食下,其副睪旁脂肪組織的胰島素敏感性顯著低於野生型小鼠,且伴隨著代謝相關分子基因的表現量下降。然而,在PPARγ低表達量小鼠的鼠蹊部脂肪組織中,其胰島素敏感性相較於野生型小鼠卻有顯著升高,但其代謝相關基因的表現量則較沒有受到PPARγ缺失影響。在給予高脂肪飼料餵食下, PPARγ低表達量小鼠中,副睪旁脂肪組織的胰島素敏感性相較於野生型小鼠有更明顯下降情形,而鼠蹊部脂肪組織胰島素敏感性則仍有明顯增高現象。PPARγ低表達量小鼠中,肝臟和肌肉組織胰島素敏感性也受到高脂肪飼料餵食影響而些微降低。此外,PPARγ低表達量小鼠的副睪旁及鼠蹊部脂肪組織中,一些和代謝相關的基因表現量也都受到高脂肪餵食影響。有趣的是,當我們給予TZD後,PPARγ低表達量小鼠的全身性胰島素阻抗現象完全消失,而副睪旁及鼠蹊部脂肪組織、肝臟和肌肉組織的胰島素敏感性和野生型小鼠比較則無明顯差異。另外,在PPARγ低表達量小鼠的副睪旁脂肪組織中,大部分代謝基因的表現量也受到TZD的影響,而與野生型小鼠無明顯差異。進一步我們更發現在內生性PPARγ 表達量正常的情況下,TZD主要提升鼠蹊部脂肪的胰島素敏感性,然而,在內生性PPARγ 缺失情況下,TZD則主要是提升副睪旁脂肪組織的胰島素敏感性。綜合以上結果可知,內生性PPARγ對於副睪旁脂肪組織的胰島素敏感性和代謝功能維持是重要的,而此會進一步影響其他胰島素反應組織及全身性的胰島素敏感性。

    Type 2 diabetes is accompanied by insulin resistance in multiple insulin-responsive tissues. Thiazolidinediones (TZDs), including rosiglitazone and pioglitazone, are synthetic peroxisome proliferator-activated receptor γ (PPARγ) ligands and anti-diabetic drugs that are used to reduce insulin resistance and hyperglycemia in patients with type 2 diabetes. The therapeutic effects of TZDs may be the integrated actions on PPARγ of one or more insulin-responsive tissues. However, the impact of PPARγ in maintenance of insulin sensitivity in different tissues is not fully clarified. We used mice with extremely low PPARγ level (PpargC/- mice) to dissect the role of PPARγ in insulin sensitivity of individual tissues under the condition of regular chow (RC), high-fat diet (HFD) and HFD with TZD (HFTZD). Our previous study showed that PPARγ deficiency leads to a selective fat loss in perigonadal depot, hyperlipidemia and systemic insulin resistance. Thus we hypothesized that PPARγ deficiency impaired gene expression profile and local insulin sensitivity in perigonadal fat, further contributing to systemic insulin resistance. First, we found that insulin sensitivity was selectively impaired in perigonadal fat with a concurrent reduction of gene expression profile in RC-fed PpargC/- mice. The insulin sensitivity of inguinal fat was not impaired, and most factors in this depot were not affected in RC-fed PpargC/- mice. After HFD feeding, PpargC/- mice had exaggeratedly impaired insulin sensitivity in perigonadal fat and increased insulin sensitivity in inguinal fat of PpargC/- mice. HFD also modestly affected the insulin sensitivity in liver and skeletal muscle in PpargC/- mice. Gene expression profiles in both perigonadal and inguinal fat depots, not liver and skeletal muscle, were affected by PPARγ deficiency in the condition of excess lipid load. Interestingly, TZD treatment reversed the systemic insulin resistance, which is associated with the normalization of local insulin sensitivity in perigonadal fat, liver and skeletal muscle. Consistently, the gene expression profile indicated that most factors involved in glucose and lipid metabolism in perigonadal fat were reversed to the same extent of Pparg+/+ mice. Furthermore, we found TZD exhibits its insulin-sensitizing effect predominantly through its action in inguinal fat in normal endogenous PPARγ expression, but through its action in perigonadal fat in endogenous PPARγ deficiency. In conclusion, our study demonstrates that the role of PPARγ in adipose tissue is more important than non-adipose tissue (liver and skeletal muscle) in maintenance of insulin sensitivity and functionality. Thus, normal level of endogenous PPARγ is required for maintenance of insulin sensitivity and functionality in perigonadal fat, which would further influence the insulin sensitivity of other insulin-responsive tissues and whole body.

    INTRODUCTION……………………………………………………………1 1.Insulin resistance and type 2 diabetes………………………1 2.Insulin-responsive tissues in insulin resistance…………1 3.Thiazolidinediones (TZDs) as antidiabetic drugs…………2 4.Peroxisome proliferator-activated receptor γ (PPARγ)…3 5.Role of PPARγ in insulin-responsive tissues………………4 5.1 PPARγ in adipose tissue………………………………………4 5.2 PPARγ in liver…………………………………………………5 5.3 PPARγ in skeletal muscle……………………………………6 6.Significance…………………………………………………………7 MATERIALS AND METHODS………………………………………………8 1.Mice……………………………………………………………………8 2.Oral glucose tolerance test and insulin resistance (IR) index…………8 3.Insulin infusion and tissues collection……………………9 4.Total protein extraction…………………………………………9 5.Western blotting…………………………………………………10 6.RNA extraction……………………………………………………10 7.Reverse transcription- polymerase chain reaction (RT-PCR)……11 8.Real-time PCR………………………………………………………12 9.Data analysis………………………………………………………12 RESULTS…………………………………………………………………13 DISCUSSION……………………………………………………………25 REFERENCES……………………………………………………………33 TABLES……………………………………………………………………39 APPENDIX…………………………………………………………………59

    [1] Shaw JE, Sicree RA, Zimmet PZ Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87: 4-14
    [2] Kahn CR (1995) Diabetes. Causes of insulin resistance. Nature 373: 384-385
    [3] White MF (2002) IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab 283: E413-422
    [4] Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414: 799-806
    [5] Evans RM, Barish GD, Wang YX (2004) PPARs and the complex journey to obesity. Nat Med 10: 355-361
    [6] Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106: 171-176
    [7] Bays H, Mandarino L, DeFronzo RA (2004) Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J Clin Endocrinol Metab 89: 463-478
    [8] Nolan JJ, Ludvik B, Beerdsen P, Joyce M, Olefsky J (1994) Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N Engl J Med 331: 1188-1193
    [9] Tontonoz P, Spiegelman BM (2008) Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem 77: 289-312
    [10] Yki-Jarvinen H (2004) Thiazolidinediones. N Engl J Med 351: 1106-1118
    [11] Miyazaki Y, Glass L, Triplitt C, et al. (2001) Effect of rosiglitazone on glucose and non-esterified fatty acid metabolism in Type II diabetic patients. Diabetologia 44: 2210-2219
    [12] Bajaj M, Suraamornkul S, Piper P, et al. (2004) Decreased plasma adiponectin concentrations are closely related to hepatic fat content and hepatic insulin resistance in pioglitazone-treated type 2 diabetic patients. J Clin Endocrinol Metab 89: 200-206
    [13] Miyazaki Y, Mahankali A, Matsuda M, et al. (2002) Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab 87: 2784-2791
    [14] Miyazaki Y, Mahankali A, Matsuda M, et al. (2001) Improved glycemic control and enhanced insulin sensitivity in type 2 diabetic subjects treated with pioglitazone. Diabetes Care 24: 710-719
    [15] Carey DG, Cowin GJ, Galloway GJ, et al. (2002) Effect of rosiglitazone on insulin sensitivity and body composition in type 2 diabetic patients [corrected]. Obes Res 10: 1008-1015
    [16] Adams M, Montague CT, Prins JB, et al. (1997) Activators of peroxisome proliferator-activated receptor gamma have depot-specific effects on human preadipocyte differentiation. J Clin Invest 100: 3149-3153
    [17] Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 270: 12953-12956
    [18] Rangwala SM, Lazar MA (2004) Peroxisome proliferator-activated receptor gamma in diabetes and metabolism. Trends Pharmacol Sci 25: 331-336
    [19] Fajas L, Fruchart JC, Auwerx J (1998) PPARgamma3 mRNA: a distinct PPARgamma mRNA subtype transcribed from an independent promoter. FEBS Lett 438: 55-60
    [20] McKenna NJ, O'Malley BW (2002) Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108: 465-474
    [21] Lehrke M, Lazar MA (2005) The many faces of PPARgamma. Cell 123: 993-999
    [22] Takasawa K, Kubota N, Terauchi Y, Kadowaki T (2008) Impact of increased PPARgamma activity in adipocytes in vivo on adiposity, insulin sensitivity and the effects of rosiglitazone treatment. Endocr J 55: 767-776
    [23] Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM (1994) mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 8: 1224-1234
    [24] Iwaki M, Matsuda M, Maeda N, et al. (2003) Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes 52: 1655-1663
    [25] Berger JP, Akiyama TE, Meinke PT (2005) PPARs: therapeutic targets for metabolic disease. Trends Pharmacol Sci 26: 244-251
    [26] Tontonoz P, Hu E, Spiegelman BM (1994) Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79: 1147-1156
    [27] Maeda N, Takahashi M, Funahashi T, et al. (2001) PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 50: 2094-2099
    [28] Yu JG, Javorschi S, Hevener AL, et al. (2002) The effect of thiazolidinediones on plasma adiponectin levels in normal, obese, and type 2 diabetic subjects. Diabetes 51: 2968-2974
    [29] Shibasaki M, Takahashi K, Itou T, Bujo H, Saito Y (2003) A PPAR agonist improves TNF-alpha-induced insulin resistance of adipose tissue in mice. Biochem Biophys Res Commun 309: 419-424
    [30] Solomon SS, Odunusi O, Carrigan D, et al. TNF-alpha inhibits insulin action in liver and adipose tissue: A model of metabolic syndrome. Horm Metab Res 42: 115-121
    [31] Galic S, Oakhill JS, Steinberg GR Adipose tissue as an endocrine organ. Mol Cell Endocrinol 316: 129-139
    [32] Koutnikova H, Cock TA, Watanabe M, et al. (2003) Compensation by the muscle limits the metabolic consequences of lipodystrophy in PPAR gamma hypomorphic mice. Proc Natl Acad Sci U S A 100: 14457-14462
    [33] He W, Barak Y, Hevener A, et al. (2003) Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad Sci U S A 100: 15712-15717
    [34] Imai T, Takakuwa R, Marchand S, et al. (2004) Peroxisome proliferator-activated receptor gamma is required in mature white and brown adipocytes for their survival in the mouse. Proc Natl Acad Sci U S A 101: 4543-4547
    [35] Zhang J, Fu M, Cui T, et al. (2004) Selective disruption of PPARgamma 2 impairs the development of adipose tissue and insulin sensitivity. Proc Natl Acad Sci U S A 101: 10703-10708
    [36] Kersten S, Desvergne B, Wahli W (2000) Roles of PPARs in health and disease. Nature 405: 421-424
    [37] Rasmussen BB, Wolfe RR (1999) Regulation of fatty acid oxidation in skeletal muscle. Annu Rev Nutr 19: 463-484
    [38] Gavrilova O, Haluzik M, Matsusue K, et al. (2003) Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J Biol Chem 278: 34268-34276
    [39] Vidal-Puig A, Jimenez-Linan M, Lowell BB, et al. (1996) Regulation of PPAR gamma gene expression by nutrition and obesity in rodents. J Clin Invest 97: 2553-2561
    [40] Memon RA, Tecott LH, Nonogaki K, et al. (2000) Up-regulation of peroxisome proliferator-activated receptors (PPAR-alpha) and PPAR-gamma messenger ribonucleic acid expression in the liver in murine obesity: troglitazone induces expression of PPAR-gamma-responsive adipose tissue-specific genes in the liver of obese diabetic mice. Endocrinology 141: 4021-4031
    [41] Rahimian R, Masih-Khan E, Lo M, van Breemen C, McManus BM, Dube GP (2001) Hepatic over-expression of peroxisome proliferator activated receptor gamma2 in the ob/ob mouse model of non-insulin dependent diabetes mellitus. Mol Cell Biochem 224: 29-37
    [42] Yu S, Matsusue K, Kashireddy P, et al. (2003) Adipocyte-specific gene expression and adipogenic steatosis in the mouse liver due to peroxisome proliferator-activated receptor gamma1 (PPARgamma1) overexpression. J Biol Chem 278: 498-505
    [43] Matsusue K, Haluzik M, Lambert G, et al. (2003) Liver-specific disruption of PPARgamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J Clin Invest 111: 737-747
    [44] DeFronzo RA, Tripathy D (2009) Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32 Suppl 2: S157-163
    [45] Cortright RN, Zheng D, Jones JP, et al. (1999) Regulation of skeletal muscle UCP-2 and UCP-3 gene expression by exercise and denervation. Am J Physiol 276: E217-221
    [46] Fajas L, Auboeuf D, Raspe E, et al. (1997) The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem 272: 18779-18789
    [47] Norris AW, Chen L, Fisher SJ, et al. (2003) Muscle-specific PPARgamma-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones. J Clin Invest 112: 608-618
    [48] Hevener AL, He W, Barak Y, et al. (2003) Muscle-specific Pparg deletion causes insulin resistance. Nat Med 9: 1491-1497
    [49] Verma NK, Singh J, Dey CS (2004) PPAR-gamma expression modulates insulin sensitivity in C2C12 skeletal muscle cells. Br J Pharmacol 143: 1006-1013
    [50] Amin RH, Mathews ST, Camp HS, Ding L, Leff T Selective activation of PPARgamma in skeletal muscle induces endogenous production of adiponectin and protects mice from diet-induced insulin resistance. Am J Physiol Endocrinol Metab 298: E28-37
    [51] Tsai YS, Tsai PJ, Jiang MJ, et al. (2009) Decreased PPAR gamma expression compromises perigonadal-specific fat deposition and insulin sensitivity. Mol Endocrinol 23: 1787-1798
    [52] Alessi DR, Andjelkovic M, Caudwell B, et al. (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15: 6541-6551
    [53] Farmer SR (2006) Transcriptional control of adipocyte formation. Cell Metab 4: 263-273
    [54] Hamdy O, Porramatikul S, Al-Ozairi E (2006) Metabolic obesity: the paradox between visceral and subcutaneous fat. Curr Diabetes Rev 2: 367-373
    [55] Fan JG, Farrell GC (2008) VAT fat is bad for the liver, SAT fat is not! J Gastroenterol Hepatol 23: 829-832
    [56] Wahrenberg H, Lonnqvist F, Arner P (1989) Mechanisms underlying regional differences in lipolysis in human adipose tissue. J Clin Invest 84: 458-467
    [57] Arner P (1995) Differences in lipolysis between human subcutaneous and omental adipose tissues. Ann Med 27: 435-438
    [58] Mori Y, Murakawa Y, Okada K, et al. (1999) Effect of troglitazone on body fat distribution in type 2 diabetic patients. Diabetes Care 22: 908-912
    [59] Smith SR, De Jonge L, Volaufova J, Li Y, Xie H, Bray GA (2005) Effect of pioglitazone on body composition and energy expenditure: a randomized controlled trial. Metabolism 54: 24-32
    [60] Laplante M, Festuccia WT, Soucy G, et al. (2006) Mechanisms of the depot specificity of peroxisome proliferator-activated receptor gamma action on adipose tissue metabolism. Diabetes 55: 2771-2778
    [61] Laplante M, Sell H, MacNaul KL, Richard D, Berger JP, Deshaies Y (2003) PPAR-gamma activation mediates adipose depot-specific effects on gene expression and lipoprotein lipase activity: mechanisms for modulation of postprandial lipemia and differential adipose accretion. Diabetes 52: 291-299
    [62] Lowell BB (1999) PPARgamma: an essential regulator of adipogenesis and modulator of fat cell function. Cell 99: 239-242
    [63] Wu Z, Rosen ED, Brun R, et al. (1999) Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol Cell 3: 151-158
    [64] Kaestner KH, Christy RJ, Lane MD (1990) Mouse insulin-responsive glucose transporter gene: characterization of the gene and trans-activation by the CCAAT/enhancer binding protein. Proc Natl Acad Sci U S A 87: 251-255
    [65] Park MJ, Kong HJ, Kim HY, Kim HH, Kim JH, Cheong JH (2007) Transcriptional repression of the gluconeogenic gene PEPCK by the orphan nuclear receptor SHP through inhibitory interaction with C/EBPalpha. Biochem J 402: 567-574
    [66] Ross SR, Graves RA, Greenstein A, et al. (1990) A fat-specific enhancer is the primary determinant of gene expression for adipocyte P2 in vivo. Proc Natl Acad Sci U S A 87: 9590-9594
    [67] Gregoire FM, Smas CM, Sul HS (1998) Understanding adipocyte differentiation. Physiol Rev 78: 783-809
    [68] Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM (2000) Transcriptional regulation of adipogenesis. Genes Dev 14: 1293-1307
    [69] Hamm JK, el Jack AK, Pilch PF, Farmer SR (1999) Role of PPAR gamma in regulating adipocyte differentiation and insulin-responsive glucose uptake. Ann N Y Acad Sci 892: 134-145
    [70] El-Jack AK, Hamm JK, Pilch PF, Farmer SR (1999) Reconstitution of insulin-sensitive glucose transport in fibroblasts requires expression of both PPARgamma and C/EBPalpha. J Biol Chem 274: 7946-7951
    [71] Hotamisligil GS, Budavari A, Murray D, Spiegelman BM (1994) Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-alpha. J Clin Invest 94: 1543-1549
    [72] Hajer GR, van Haeften TW, Visseren FL (2008) Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 29: 2959-2971
    [73] Ruan H, Hacohen N, Golub TR, Van Parijs L, Lodish HF (2002) Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-kappaB activation by TNF-alpha is obligatory. Diabetes 51: 1319-1336
    [74] Patton JS, Shepard HM, Wilking H, et al. (1986) Interferons and tumor necrosis factors have similar catabolic effects on 3T3 L1 cells. Proc Natl Acad Sci U S A 83: 8313-8317

    下載圖示 校內:2014-08-23公開
    校外:2014-08-23公開
    QR CODE