| 研究生: |
黃禹傑 Huang, Yu-Chieh |
|---|---|
| 論文名稱: |
紫外光聚合複合高分子電解質結合共熔鹽與無機填充物應用於鋰電池 UV-Cured Composite Polymer Electrolytes Containing Deep Eutectic Solvents and Inorganic Fillers for Lithium Batteries |
| 指導教授: |
詹正雄
Jan, Jeng-Shiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 鋰電池 (Lithium metal battery) 、深共熔溶劑 (Deep eutectic solvent) 、複合高分子電解質 (Composite polymer electrolyte) 、無機填充物 (Inorganic filler) |
| 外文關鍵詞: | Deep-eutectic-solvent, polymer electrolyte, ceramic inorganic filler, lithium-metal battery |
| 相關次數: | 點閱:106 下載:21 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的發展,人類對於鋰電池的需求日益增大,然而使用傳統液態電解液作為電解質存在滲液及爆炸等風險,因此人們積極往膠固態電解質發展,期望能在電性與安全之間取得平衡。深共熔溶劑相較於傳統液態電解液,具有較高的熱穩定性,此外與離子液體相比具有較低的毒性與成本,在當今追求環境友善與綠色科技的潮流下極具發展潛力。
本論文將LiTSFI與N-MAc形成的共熔鹽導入高分子網絡中,利用紫外光聚合的方式將其包覆,並添加不同的無機填充物(Al2O3、TiO2和LATP),期望能提升電解質的導離子度與電化學性質。高分子骨架以BA為主要單體,添加少量AN期望能提升電池性能表現,並加入交聯劑HDDA,形成可獨立脫模的複合高分子電解質(CPE),最後將其應用於鋰電池,進行一系列的電化學測試與材料性質分析。
本研究發現將共熔鹽包覆於高分子電解質中能有效提升電化學穩定性與電池的可逆性。添加氧化鋁的電解質CPE-A5相較於沒有添加的GPE電解質,具有更高的導離子度(6.8 × 10-4 S cm-1)與電化學穩定窗口上限(4.6 V vs. Li/Li+)。此外其半電池0.2 C的循環壽命達400圈並仍有147 mAh g-1的電容量與95%的維持率。從對稱鋰夾測試也可看出CPE-A5對於鋰金屬具有更高的穩定性與抑制鋰枝晶生長的能力。
Deep-eutectic-solvent (DES), which are formed by mixing LiTFSI and N-methylacetamide in a molar ratio of 1:4, can be seen as a kind of promising green additive in electrolyte composition. In this study, DES is immobilized in the UV-cured poly(butyl acrylate-co-acrylonitrile) crosslinked by 1,6-hexanediol diacrylate (HDDA) to serve as a novel polymer electrolyte for lithium-metal battery (LMB). Moreover, ceramic inorganic fillers (Al2O3, TiO2, LATP) are introduced into the system to further enhance the electrical properties of the final electrolyte membranes. The results indicate that an extraordinary conductivity value of 6.8 × 10-4 S cm-1 and an improved electrochemical stability up to 4.6 V can be achieved by the sample with 5 wt% Al2O3 addition (CPE-A5) at 25 ℃, which are much better than those of the system that DES are directly infiltrated into the commercial PP separator. By virtue of above superiority, the assembled Li//CPE-A5//LFP cell can deliver a discharge capacity of 155 mAh g-1 with a 95.3% retention after 400 cycles at 0.2 C rate under 25 ℃, meaning that CPE-A5 is a potential candidate for the next-generation LMB application and the combination of the DES system and Al2O3 filler is a great strategy to upgrade the battery performance.
1. Ritchie, A.; Howard, W., Recent developments and likely advances in lithium-ion batteries. Journal of Power Sources 2006, 162 (2), 809-812.
2. Luo, X.; Wang, J.; Dooner, M.; Clarke, J., Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy 2015, 137, 511-536.
3. Whittingham, M. S., History, Evolution, and Future Status of Energy Storage. Proceedings of the IEEE 2012, 100 (Special Centennial Issue), 1518-1534.
4. Liu, B.; Zhang, J.-G.; Xu, W., Advancing Lithium Metal Batteries. Joule 2018, 2 (5), 833-845.
5. Zhu, R.; Feng, J.; Guo, Z., In Situ Observation of Dendrite Behavior of Electrode in Half and Full Cells. Journal of The Electrochemical Society 2019, 166 (6), A1107-A1113.
6. Chen, K.-H.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P., Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. Journal of Materials Chemistry A 2017, 5 (23), 11671-11681.
7. Choi, J. W.; Aurbach, D., Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials 2016, 1 (4).
8. J.-M. Tarascon, M. A., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414 (6861), 359-367.
9. Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X., A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 2014, 7 (12), 3857-3886.
10. Tang, Y.; Zhang, Y.; Li, W.; Ma, B.; Chen, X., Rational material design for ultrafast rechargeable lithium-ion batteries. Chem Soc Rev 2015, 44 (17), 5926-40.
11. Zhongchen Tian, H. Y., Zhong Zhang, Xijin Xu, Performance Improvements of Cobalt Oxide Cathodesfor Rechargeable Lithium Batteries. ChemBioEng Reviews 2018, 5 (2), 111-118.
12. Somo, T. R.; Mabokela, T. E.; Teffu, D. M.; Sekgobela, T. K.; Ramogayana, B.; Hato, M. J.; Modibane, K. D., A Comparative Review of Metal Oxide Surface Coatings on Three Families of Cathode Materials for Lithium Ion Batteries. Coatings 2021, 11 (7).
13. K.Mizushima, P. C. J., P.J.Wiseman, J.B.Goodenough, LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin 1980, 15 (6), 783-789.
14. Zybert, M.; Ronduda, H.; Szczęsna, A.; Trzeciak, T.; Ostrowski, A.; Żero, E.; Wieczorek, W.; Raróg-Pilecka, W.; Marcinek, M., Different strategies of introduction of lithium ions into nickel‑manganese‑cobalt carbonate resulting in LiNi0.6Mn0.2Co0.2O2 (NMC622) cathode material for Li-ion batteries. Solid State Ionics 2020, 348.
15. Hou, P.; Zhang, H.; Zi, Z.; Zhang, L.; Xu, X., Core–shell and concentration-gradient cathodes prepared via co-precipitation reaction for advanced lithium-ion batteries. Journal of Materials Chemistry A 2017, 5 (9), 4254-4279.
16. Tao, S.; Zhao, H.; Wu, C.; Xie, H.; Cui, P.; Xiang, T.; Chen, S.; Zhang, L.; Fang, Y.; Wang, Z.; Chu, W.; Qian, B.; Song, L., Enhanced electrochemical performance of MoO3-coated LiMn2O4 cathode for rechargeable lithium-ion batteries. Materials Chemistry and Physics 2017, 199, 203-208.
17. Xia, H.; Luo, Z.; Xie, J., Nanostructured LiMn2O4 and their composites as high-performance cathodes for lithium-ion batteries. Progress in Natural Science: Materials International 2012, 22 (6), 572-584.
18. Qiming Zhong, A. B., Meijie Zhang, Yuan Gao and J. R. Dahn, Synthesis and Electrochemistry of LiNix Mn2 − x O 4. Journal of The Electrochemical Society 1997, 144 (1), 205-212.
19. Christian M. Julien, A. M., Karim Zaghib and Henri Groult Comparative Issues of Cathode Materials for Li-Ion Batteries. Inorganics 2014, 2 (1), 132-154.
20. Lu, J.; Chen, Z.; Pan, F.; Cui, Y.; Amine, K., High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries. Electrochemical Energy Reviews 2018, 1 (1), 35-53.
21. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The chemistry of graphene oxide. Chem Soc Rev 2010, 39 (1), 228-40.
22. Yi, T.-F.; Yang, S.-Y.; Xie, Y., Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries. Journal of Materials Chemistry A 2015, 3 (11), 5750-5777.
23. Zuo, X.; Zhu, J.; Müller-Buschbaum, P.; Cheng, Y.-J., Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy 2017, 31, 113-143.
24. Chen, H.; Ling, M.; Hencz, L.; Ling, H. Y.; Li, G.; Lin, Z.; Liu, G.; Zhang, S., Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices. Chem Rev 2018, 118 (18), 8936-8982.
25. Chou, S. L.; Pan, Y.; Wang, J. Z.; Liu, H. K.; Dou, S. X., Small things make a big difference: binder effects on the performance of Li and Na batteries. Phys Chem Chem Phys 2014, 16 (38), 20347-59.
26. Goodenough, J. B.; Kim, Y., Challenges for Rechargeable Li Batteries. Chemistry of Materials 2009, 22 (3), 587-603.
27. RachidYazami, Surface chemistry and lithium storage capability of the graphite–lithium electrode. Electrochimica Acta 1999, 45 (1-2), 87-97.
28. Long, L.; Wang, S.; Xiao, M.; Meng, Y., Polymer electrolytes for lithium polymer batteries. Journal of Materials Chemistry A 2016, 4 (26), 10038-10069.
29. S. E. Sloop, J. K. P., S. Wang, J. B. Kerr, and K. Kinoshita, Chemical Reactivity of PF5 and LiPF6 in Ethylene Carbonate/Dimethyl Carbonate Solutions. Electrochemical and Solid-State Letters 2001, 4 (42-44), 42.
30. Horowitz, Y.; Lifshitz, M.; Greenbaum, A.; Feldman, Y.; Greenbaum, S.; Sokolov, A. P.; Golodnitsky, D., Review—Polymer/Ceramic Interface Barriers: The Fundamental Challenge for Advancing Composite Solid Electrolytes for Li-Ion Batteries. Journal of The Electrochemical Society 2020, 167 (16).
31. Manthiram, A.; Yu, X.; Wang, S., Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials 2017, 2 (4).
32. Cao, C.; Li, Z.-B.; Wang, X.-L.; Zhao, X.-B.; Han, W.-Q., Recent Advances in Inorganic Solid Electrolytes for Lithium Batteries. Frontiers in Energy Research 2014, 2.
33. Famprikis, T.; Canepa, P.; Dawson, J. A.; Islam, M. S.; Masquelier, C., Fundamentals of inorganic solid-state electrolytes for batteries. Nat Mater 2019, 18 (12), 1278-1291.
34. Liu, W.; Lee, S. W.; Lin, D.; Shi, F.; Wang, S.; Sendek, A. D.; Cui, Y., Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nature Energy 2017, 2 (5).
35. Liu, W.; Lin, D.; Sun, J.; Zhou, G.; Cui, Y., Improved Lithium Ionic Conductivity in Composite Polymer Electrolytes with Oxide-Ion Conducting Nanowires. ACS Nano 2016, 10 (12), 11407-11413.
36. J.Y.Song, Y. Y. W., C.C.Wan, Review of gel-type polymer electrolytes for lithium-ion batteries. Journal of Power Sources 1999, 77 (2), 183-197.
37. Ma, C.; Cui, W.; Liu, X.; Ding, Y.; Wang, Y., In situ preparation of gel polymer electrolyte for lithium batteries: Progress and perspectives. InfoMat 2021, 4 (2).
38. Montanino, M.; Passerini, S.; Appetecchi, G. B., Electrolytes for rechargeable lithium batteries. In Rechargeable Lithium Batteries, 2015; pp 73-116.
39. Zhu, M.; Wu, J.; Wang, Y.; Song, M.; Long, L.; Siyal, S. H.; Yang, X.; Sui, G., Recent advances in gel polymer electrolyte for high-performance lithium batteries. Journal of Energy Chemistry 2019, 37, 126-142.
40. Yongku Kanga, H. J. K., Eunkyoung Kima, Bookeun Ohb, Jae Hyun Choc, Photocured PEO-based solid polymer electrolyte and its application to lithium-polymer batteries. Journal of Power Sources 2001, 92, 255-259.
41. F.Groce, F. G., G.Dautzemberg, S.Passerini, G.B.Appetecchi, B.Scrosati, Synthesis and characterization of highly conducting gel electrolytes. Electrochimica Acta 1994, 39 (14), 2187-2194.
42. Manuel, J.; Liu, Y.; Lee, M.-H.; Zhao, X.; Kim, M.; Chauhan, G. S.; Ahn, H.-J.; Ahn, J.-H., Effect of Nano-Sized Ceramic Fillers on the Performance of Polymer Electrolytes Based on Electrospun Polyacrylonitrile Nanofibrous Membrane for Lithium Ion Batteries. Science of Advanced Materials 2016, 8 (4), 741-748.
43. Guan, X.; Chen, F.; Li, Z.; Zhou, H.; Ma, X., Influence of a rigid polystyrene block on the free volume and ionic conductivity of a gel polymer electrolyte based on poly(methyl methacrylate)-block-polystyrene. Journal of Applied Polymer Science 2016, 133 (38).
44. Manuel Stephan, A., Review on gel polymer electrolytes for lithium batteries. European Polymer Journal 2006, 42 (1), 21-42.
45. Winter, M., The Solid Electrolyte Interphase – The Most Important and the Least Understood Solid Electrolyte in Rechargeable Li Batteries. Zeitschrift für Physikalische Chemie 2009, 223 (10-11), 1395-1406.
46. Heiskanen, S. K.; Kim, J.; Lucht, B. L., Generation and Evolution of the Solid Electrolyte Interphase of Lithium-Ion Batteries. Joule 2019, 3 (10), 2322-2333.
47. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q., A Review of Solid Electrolyte Interphases on Lithium Metal Anode. Adv Sci (Weinh) 2016, 3 (3), 1500213.
48. Shi, S.; Lu, P.; Liu, Z.; Qi, Y.; Hector, L. G., Jr.; Li, H.; Harris, S. J., Direct calculation of Li-ion transport in the solid electrolyte interphase. J Am Chem Soc 2012, 134 (37), 15476-87.
49. Abbott, A. P.; Capper, G.; Davies, D. L.; Munro, H. L.; Rasheed, R. K.; Tambyrajah, V., Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chem Commun (Camb) 2001, (19), 2010-1.
50. Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V., Novel solvent properties of choline chloride/urea mixtures. Chem Commun (Camb) 2003, (1), 70-1.
51. Martins, M. A. R.; Pinho, S. P.; Coutinho, J. A. P., Insights into the Nature of Eutectic and Deep Eutectic Mixtures. Journal of Solution Chemistry 2018, 48 (7), 962-982.
52. Mannu, A.; Blangetti, M.; Baldino, S.; Prandi, C., Promising Technological and Industrial Applications of Deep Eutectic Systems. Materials (Basel) 2021, 14 (10).
53. Smith, E. L.; Abbott, A. P.; Ryder, K. S., Deep eutectic solvents (DESs) and their applications. Chem Rev 2014, 114 (21), 11060-82.
54. Hansen, B. B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J. M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B. W.; Gurkan, B.; Maginn, E. J.; Ragauskas, A.; Dadmun, M.; Zawodzinski, T. A.; Baker, G. A.; Tuckerman, M. E.; Savinell, R. F.; Sangoro, J. R., Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem Rev 2021, 121 (3), 1232-1285.
55. Hongying Liang, H. L., Zhaoxiang Wang, Feng Wu, Liquan Chen, Xuejie Huang, New Binary Room-Temperature Molten Salt Electrolyte Based on Urea and LiTFSI. J. Phys. Chem. B 2001, 105 (41), 9966-9969.
56. Yongsheng Hu, H. L., Xuejie Huang, Liquan Chen, Novel room temperature molten salt electrolyte based on LiTFSI
and acetamide for lithium batteries. Electrochemistry Communications 2004, 6, 28-32.
57. Boisset, A.; Menne, S.; Jacquemin, J.; Balducci, A.; Anouti, M., Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries. Phys Chem Chem Phys 2013, 15 (46), 20054-63.
58. Boisset, A.; Jacquemin, J.; Anouti, M., Physical properties of a new Deep Eutectic Solvent based on lithium bis[(trifluoromethyl)sulfonyl]imide and N-methylacetamide as superionic suitable electrolyte for lithium ion batteries and electric double layer capacitors. Electrochimica Acta 2013, 102, 120-126.
59. Joos, B.; Vranken, T.; Marchal, W.; Safari, M.; Van Bael, M. K.; Hardy, A. T., Eutectogels: A New Class of Solid Composite Electrolytes for Li/Li-Ion Batteries. Chemistry of Materials 2018, 30 (3), 655-662.
60. Joos, B.; Volders, J.; da Cruz, R. R.; Baeten, E.; Safari, M.; Van Bael, M. K.; Hardy, A. T., Polymeric Backbone Eutectogels as a New Generation of Hybrid Solid-State Electrolytes. Chemistry of Materials 2020, 32 (9), 3783-3793.
61. Logan, M. W.; Langevin, S.; Tan, B.; Freeman, A. W.; Hoffman, C.; Trigg, D. B.; Gerasopoulos, K., UV-cured eutectic gel polymer electrolytes for safe and robust Li-ion batteries. Journal of Materials Chemistry A 2020, 8 (17), 8485-8495.
62. Jaumaux, P.; Liu, Q.; Zhou, D.; Xu, X.; Wang, T.; Wang, Y.; Kang, F.; Li, B.; Wang, G., Deep-Eutectic-Solvent-Based Self-Healing Polymer Electrolyte for Safe and Long-Life Lithium-Metal Batteries. Angew Chem Int Ed Engl 2020, 59 (23), 9134-9142.
63. Li, Z.; Zhang, S.; Jiang, Z.; Cai, D.; Gu, C.; Tu, J., Deep eutectic solvent-immobilized PVDF-HFP eutectogel as solid electrolyte for safe lithium metal battery. Materials Chemistry and Physics 2021, 267.
64. F. Croce, L. P., B. Scrosati, F. Serraino-Fiory, E. Plichta, M.A. Hendrickson Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochimica Acta 2001, 46, 2457-2461.
65. Zhaoxiang Wang, X. H., Liquan Chen, Understanding of Effects of Nano-Al2O3 Particles on Ionic Conductivity of Composite Polymer Electrolytes. Electrochemical and Solid-State Letters 2003, 6, E40-E44.
66. Liao, Y. H.; Li, X. P.; Fu, C. H.; Xu, R.; Zhou, L.; Tan, C. L.; Hu, S. J.; Li, W. S., Polypropylene-supported and nano-Al2O3 doped poly(ethylene oxide)–poly(vinylidene fluoride-hexafluoropropylene)-based gel electrolyte for lithium ion batteries. Journal of Power Sources 2011, 196 (4), 2115-2121.
67. Wagner, J. S., The Search for a Highly Efficient Long-Wavelength Photoinitiator by Increasing Aryl Conjugation: From Computational Design, Characterization, and Potential Application 2015.
68. Choi, W.; Shin, H.-C.; Kim, J. M.; Choi, J.-Y.; Yoon, W.-S., Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries. Journal of Electrochemical Science and Technology 2020, 11 (1), 1-13.
69. Andre, D.; Meiler, M.; Steiner, K.; Wimmer, C.; Soczka-Guth, T.; Sauer, D. U., Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation. Journal of Power Sources 2011, 196 (12), 5334-5341.
70. Islam, S. M. R.; Park, S.-Y.; Balasingam, B., Unification of Internal Resistance Estimation Methods for Li-Ion Batteries Using Hysteresis-Free Equivalent Circuit Models. Batteries 2020, 6 (2).
71. Keefe, A. S.; Buteau, S.; Hill, I. G.; Dahn, J. R., Temperature Dependent EIS Studies Separating Charge Transfer Impedance from Contact Impedance in Lithium-Ion Symmetric Cells. Journal of The Electrochemical Society 2019, 166 (14), A3272-A3279.
72. Kim, T.; Choi, W.; Shin, H.-C.; Choi, J.-Y.; Kim, J. M.; Park, M.-S.; Yoon, W.-S., Applications of Voltammetry in Lithium Ion Battery Research. Journal of Electrochemical Science and Technology 2020, 11 (1), 14-25.
73. Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L., A Practical Beginner’s Guide to Cyclic Voltammetry. Journal of Chemical Education 2017, 95 (2), 197-206.
74. Wang, J., Analytical Electrochemistry. A John Wiley& Sons 2000, Chapter 2, 28-59.
75. Bergholt, M. S.; Serio, A.; Albro, M. B., Raman Spectroscopy: Guiding Light for the Extracellular Matrix. Front Bioeng Biotechnol 2019, 7, 303.
76. Choi, N.-S.; Park, J.-K., A comparative study of coordination between host polymers and Li+ ions in UV-cured gel polymer electrolytes. Solid State Ionics 2009, 180 (20-22), 1204-1208.
77. Luo, X.; Liao, Y.; Xie, H.; Zhu, Y.; Huang, Q.; Li, W., Enhancement of cyclic stability for high voltage lithium ion battery at elevated temperature by using polyethylene-supported poly(methyl methacrylate − butyl acrylate − acrylonitrile − styrene) based novel gel electrolyte. Electrochimica Acta 2016, 220, 47-56.
78. Choi, H.; Kim, H. W.; Ki, J.-K.; Lim, Y. J.; Kim, Y.; Ahn, J.-H., Nanocomposite quasi-solid-state electrolyte for high-safety lithium batteries. Nano Research 2017, 10 (9), 3092-3102.
79. Tania M. H. Costa, M. r. R. G., Edilson V. Benvenutti, and Joa˜o A. H. da Jornada, Study of Nanocrystalline γ-Al2O3 Produced by High-Pressure Compaction. J. Phys. Chem. B 1999, 103 (21), 4278-4284.