| 研究生: |
宋昶毅 Sung, Chang-Yi |
|---|---|
| 論文名稱: |
氧化鋅摻鈷室溫鐵磁性之電子結構及應用於發光二極體 Electron structure of room temperature ferromagnetism in Co doped ZnO and application for LED |
| 指導教授: |
黃榮俊
Huang, Jung-Chun-Andrew |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 稀磁性半導體 、室溫鐵磁性 、雷射鍍膜沉積系統 、射頻濺鍍機 、氧化鋅摻鈷 、束縛極化子模型 、發光二極體 、延伸吸收光譜 、硬 X-ray 光電子解析能譜儀 |
| 外文關鍵詞: | dilute magnetic emiconductor, room temperature ferromagnetism, PLD, RF Sputter, CoxZn1-xO, bound magnetic polarons model, LED, EXAFS, HARPES |
| 相關次數: | 點閱:120 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
磁性半導體的磁性來源來自於磁性原子的直接交互作用,在稀磁性半導體中,磁性原子間的距離較遠,磁性難以來自於原子之間的直接交互作用,於是提出許多模型來解釋磁性的來源,主要的模型多數來自於載子做為媒介的交互作用,有雙交換交互作用(Double exchange)、RKKY 交互作用、束縛極化子模型(Bound Magnetic PolaronModel),然而在氧化鋅摻鈷系統裡面,雙交換交互作用來自於不同價數的原子,電子
會在不同原子間交換,鈷原子跟鋅原子皆為二價陽離子,而RKKY 交互作用存在於高載子濃度系統的半導體當中,以載子做為磁性原子電子的媒介交換磁性原子的訊號,但即使是低載子的氧化鋅摻鈷系統,仍然可以量到鐵磁性,於是束縛極化子模型成為
主要的模型, 認為氧化鋅摻雜過渡金屬的鐵磁性來源,來自於磁性原子的3d 軌域電子跟氧空缺的impurity band 形成混成軌域,也就是氧空缺必須臨近過渡金屬原子,而束縛的電子會將磁性的訊號仍被侷限在一定範圍,本實驗室希望利用硬X-ray 光電子解析能譜儀(Hard X-ray Photoelectron Spectroscopy, HAXPES)直接量測氧化鋅摻鈷的電子結構,證明氧化鋅摻鈷的鐵磁性,來自於鈷磁性原子的3d 軌域電子跟氧空缺的impurity band 形成混成軌域,進而確立這個模型,並推廣到所有金屬氧化物摻雜過渡金屬,同時應用到發光二極體當中,藉由氧化鋅摻鈷薄膜具有磁性和良導電的特性,在不影響電壓的情況下,產生些微磁阻的效應和利用能隙間距不一致產生的位能井,使得注入作用區的電子數目減少,解決載子濃度不平衡和高載子濃度導致的內部量子效益下降問題。
A detailed understanding of the origin of the magnetism in dilute magnetic semiconductor is crucial to the application. We use pulsed laser deposition (PLD) and magnetron sputter to grow CoxZn1-xO thin film . Then, we investigate CoxZn1-xO thin film using hard X-ray angle-resolved photoemission (HARPES) with 6669 eV polarization light which can distinguish electrons come from the different orbit and extended X-ray absorption fine structure (EXAFS) to determine the local structure surrounding cobalt atoms. Using EXAFS to make sure the cobalt atoms are doped in the ZnO system. And then the measurement of the HARPES directly observing Co 3d↑-induced states in valence-band centred about 2.7eV below Fermi level and Co 3d↓-induced states near Fermi lever centred about 0.6eV below hybridizing with impurity band created by oxide vacancy. And confirm the ferromagnetism become stronger as the increasing oxide vacancy. We also use Co0.07Zn0.93O to insert into LED as a quantum wall. Solving the problem of the carrier concentration of n-GaN is larger than p-GaN. There is about 24.6% increasing efficiency after growing 20nm Co0.07Zn0.93O between n-GaN and electrode.
1. 黃榮俊, 許華書(2007),鈷:氧化鋅(Co:ZnO)稀磁性半導體室溫鐵磁性機制研究.成大研究快訊 第一卷
2. Junsaku Nitta, Tatsushi Akazaki, Hideaki Takayanagi, and Takatomo Enoki
Gate Control of Spin-Orbit Interaction in an InvertedIn0.53Ga0.47As/In0.52Al0.48As Heterostructure,Physics Review Latter, 78,1335(1997)
3. T. Dietl, H. Ohno,F. Matsukura, J. Cibert, D. Ferrand, Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors, SCIENCE,VOL 287 11 ,FEBRUARY(2002),p1019
4. Yuji Matsumoto, Makoto Murakami, Tomoji Shono, Tetsuya Hasegawa, Tomoteru Fukumura, Masashi Kawasaki, Parhat Ahmet, Toyohiro Chikyow, Shin-ya Koshihara, Hideomi Koinuma,Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide, SCIENCE ,VOL 291,p854(2001)
5. Kim, J. Y. et al. Ferromagnetism induced by clustered Co in Co-doped anatase TiO2 thin films , Phys. Rev. Lett. 90, 017401 (2003).
6. Punnoose, A., Seehra, M. S., Park, W. K. & Moodera, J. S. On the room temperature ferromagnetism in Co-doped TiO2 films. , J. Appl. Phys. 93, 7867–7869 (2003).
7. Chambers, Scott .A., Ferromagnetism in doped thin-film oxide and nitride semiconductors and dielectrics., Surface Science Reports, Volume 61, Issue 8, p. 345-381(2006).
8. H.Ohno,A,Shen,F.Matsukura,A.Endo,S.katsumoto,and Y.Iye, Nonmetal-metal-nonmetal transition and large negative magnetoresistance in (Ga, Mn)As/GaAs, App. Phy. Lett. Vol 69 , p636(1996)
9. H.Munekate,H.Ohno,S.vonMolmar,A.Segmuller,L.L.Chang and L.Esaki, Diluted magnetic III-V semiconductors,Phys,Rev,Lett,Vol.63(1989)
10. Royal Swedish Academy of Science,Efficient Blue Light-Emitting Diodes Leading To Bright And Energy-Saving White Sources,(2014)
11. 呂彥星,氧化鋅鎵薄膜成長在氮化鎵發光二極體上之應用,光電工程研究所,2007,國立成功大學
12. J.C.Fan, K.M.Sreekanth, Z.Xie, S.L.Chang, K.V.Rao,p-type ZnO materials: Theory, growth, properties and devices,Process in Material Science,874-985(2013)
13. David Jiles, Introduction to Magnetism and Magnetic Materials, CRC Press,p102(2015)
14. 胡裕民,III-V稀磁性半導體薄膜之研究與發展,物理雙月刊,兩十六卷四期(2004)
15. T. Jungwirth, Interlayer coupling in ferromagnetic semiconductor superlattices et al., Phys. Rev., Vol. B59, p.9818 (1999).
16. T. Dietl, H. Ohno , Zener model description of ferromagnetism in zinc-blende magnetic semiconductors, Phys. Rev., Vol. B63, p.195205 (2001)
17. Van An Dinh,Enhancement of TC by a carrier codoping method with size compensation for nitride-based ferromagnetic dilute magnetic semiconductors , Journal of Physics: Condensed Matter,Vol.16 , S5705 (2004)
18. Kazunori Sato and Hiroshi Katayama-Yoshida,Material Design of GaN-Based Ferromagnetic Diluted Magnetic Semiconductors, Japanese Journal of Applied Physics, Vol. 40, p485-p487(2001)
19. K Sato and H Katayama-Yoshida,First principles materials design for semiconductor spintronics, Semicond. Sci. Technol., Vol. 17, p367–376 (2002)
20. Yuji Matsumoto, Makoto Murakami, Tomoji Shono, Tetsuya Hasegawa, Tomoteru Fukumura, Masashi Kawasaki, Parhat Ahmet, Toyohiro Chikyow, Shin-ya Koshihara, Hideomi Koinuma,Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide, SCIENCE ,VOL 291,p854(2001)
21. Kramers, H. A., L'interaction Entre les Atomes Magnétogènes dans un Cristal Paramagnétique, Physica, Volume 1, Issue 1, p. 182-192(1934)
22. P. W. ANDERSON, Antiferromagnetism. Theory of Suyerexchange Interaction, Phys. Rev.,Vol 79,2(1950)
23. Clarence Zener, Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure, Phys. Rev. Vol. 82, p403(1951)
24. P. W. ANDERSON, Consideration on Double Exchange, Phys. Rev.,Vol 100,2(1955)
25. Wilhelm Zwerger,Itinerant Ferromagnetism with Ultracold Atoms, Science,Vol.325(2009)
26. J. M. D. COEY, M. VENKATESAN AND C. B. FITZGERALD, Donor impurity band exchange in dilute ferromagnetic oxides, Nature materials, Vol4,10.1038(2005)
27. Giovanni Verzellesi, Davide Saguatti, Matteo Meneghini, Francesco Bertazzi, Michele Goano, Gaudenzio Meneghesso, and Enrico Zanoni, Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies, Journal of Applied Physics 114, 071101 (2013);
28. D. K. Zakheim, A. S. Pavluchenko, D. A. Bauman, K. A. Bulashevich, O. V. Khokhlev, and S. Y. Karpov, Efficiency droop suppression in InGaN-Based bule LEDs: Experiment and numerical modeling, physics status solidi(a), Vol.209,pp456-460(2012)
29. David S. Meyaard, Guan-Bo Lin, Qifeng Shan, Jaehee Cho, E. Fred Schubert, Asymmetry of carrier transport leading to efficiency droop in GaInN based light-emitting diodes, Appl. Phys. Lett. Vol.99, 251115 (2011)
30. 楊鴻昌,最敏感的感測元件SQUID及其前瞻性應用, 臺大物理系,物理雙月刊,二十四卷五期(2002)
31. J. Weinena, T.C. Koetheb, C.F. Changa, S. Agrestinia, D. Kasinathana, Y.F. Liaoc,H. Fujiwarab, C. Schüßler-Langeheineb, F. Strigarib, T. Hauprichtb, G. Panaccioned,F. Offie, G. Monacof, S. Huotarif, K.-D. Tsueic, L.H. Tjenga,baMax, Polarization dependent hard X-ray photoemission experiments forsolids: Efficiency and limits for unraveling the orbital character of thevalence band, Journal of Electron Spectroscopy and Related Phenomena , Vol. 198 , p6–p11 (2015)
32. J.J. Rehr and R.C. Albers, Theoretical approaches to X-ray absorption fine structure, Reviews of Modern Physics, Vol. 72, p621-p654 (2000)
33. 詹丁山, 數據分析步驟簡介, X光吸收光譜訓練, p1-p35(2017)
34. Joon Seop Kwak_ and Yongjo Park, InGaN-Based Light-Emitting Diodes with Ni/Au Transparent Contacts Annealed in Di_erent Ambient Gases, Journal of the Korean Physical Society, Vol. 45, No. 4, October 2004, pp. 988_992
35. Tauc. J. , Optical properties and electronic structure of amorphous Ge and Si., Materials Research Bulletin, Vol . 3 ,1968, p37–46