| 研究生: |
江振輝 Chiang, Chen-Hui |
|---|---|
| 論文名稱: |
使用螢光偏極化技術和傅立葉轉換紅外光譜儀探討膽固醇和乙醇對類乙醇體陰陽離子液胞雙層膜堅硬度之影響的比較研究 Comparative Studies of the Effects of Cholesterol and Ethanol on the Bilayer Rigidity of Ethosome-like Catanionic Vesicles by Using FP and FT-IR |
| 指導教授: |
楊毓民
Yang, Yu-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 類乙醇體陰陽離子液胞 、膽固醇效應 、乙醇效應 、強制製程液胞形成之機制 、雙層膜堅硬度 、螢光偏極化技術 、傅立葉轉換紅外光譜儀 |
| 外文關鍵詞: | Ethosome-like catanionic vesicles, Vesicle formation mechanism, Fluorescence polarization technique, Fourier-transform infrared spectroscopy |
| 相關次數: | 點閱:85 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
陰陽離子界面活性劑(Catanionic surfactant),又稱為離子對雙親分子(Ion-pair amphiphile, IPA),為本研究中主要材料之一,由於具有豐富的來源、高度的化學穩定性,分子結構類似脂質,且價格較為低廉,因此為藥物傳輸載體的理想選擇。本研究中以陰陽離子界面活性劑DeTMA-TS(Decyltrimethylammonium-tetradecylsulfate, C10-C14),透過強制製程方式,添加不同比例的膽固醇(XCHOL=0~0.5)和乙醇(EtOH=0~20 vol%),形成類乙醇體陰陽離子液胞分散液,探討液胞粒徑和雙層膜堅硬度之間的關聯性,並驗證強制製程液胞形成的機制。
實驗結果顯示,不同乙醇和膽固醇濃度所組成的液胞其溫度對製備完後的液胞粒徑影響不大。進一步將雙層膜堅硬度與粒徑做關聯性分析,實驗結果顯示無論是螢光偏極化技術還是傅立葉轉換紅外光譜儀,所得到的雙層膜堅硬度與粒徑呈現線性相關,這為強制製程液胞形成機制提供了有力的證據。然而,兩種儀器所得到的相關性存在差異,推測由於儀器測量原理的不同所導致的。傅立葉紅外光譜儀利用分子的振動評估碳氫鏈的整體秩序度,然而螢光偏極化技術受限於螢光探針結構的限制,乙醇濃度差異對雙層膜的影響隨著碳氫鏈的位置有所差異,因此無法完整表達乙醇對雙層膜的影響。最後,透過標準化的方式探討膽固醇與乙醇對物理性質的影響,由結果可知,透過FP測量的雙層膜堅硬度表示乙醇的效應遠低於膽固醇,而透過FT-IR測定得到的雙層膜堅硬度結果表示乙醇與膽固醇的效應差異不大,這與膽固醇和乙醇對粒徑的影響相似。因此,透過傅立葉轉換紅外光譜儀能更完整地呈現類乙醇體陰陽離子液胞中雙層膜分子的排列情況。
In this study, the catanionic surfactant DeTMA-TS (decyltrimethylammonium-tetradecylsulfate, C10-C14) was used to fabricate ethosome-like catanionic vesicle by forced formation process was by adding varying proportions of cholesterol (XCHOL = 0~0.5) and ethanol (EtOH = 0~20 vol%). Effects of CHOL and EtOH on the physical properties of vesicle were investigated. Furthermore, the relationship between vesicle size and bilayer rigidity was established with the aim to validate the mechanism of vesicle formation. The correlation analysis between bilayer rigidity and vesicle size revealed a linear relationship regardless of whether it was assessed by fluorescence polarization (FP) technique or Fourier-transform infrared (FT-IR) spectroscopy, respectively. However, there were differences in the correlations obtained from the two instruments, which is attributed to the different measurement principles of the instruments. In addition, the data obtained from the FP technique and FT-IR spectroscopy were compared, and the results were further analyzed for differences. The reason of the differences was that FT-IR spectroscopy is used to measure the vibration of molecules and detect the overall bilayer rigidity. On the other hand, the FP technique is limited by the structure of the fluorescence probe (DPH), resulting in more difficult to assess the effects of ethanol on the bilayer membrane. The results showed that EtOH and CHOL effects on bilayer rigidity by FT-IR spectroscopy was similar on vesicle size, indicating a higher correlation when using FT-IR results. Therefore, FT-IR spectroscopy can provide a more comprehensive representation of the molecular arrangement within bilayer membrane of ethosome-like catanionic vesicles.
參考文獻
[1] V. V. Ranade and J. B. Cannon, “Drug delivery systems,” CRC Press, 2011.
[2] A. Jesorka and O. Orwar, “Liposomes: technologies and analytical applications,” Annual Review of Analytical Chemistry, vol. 1, pp. 801-832, 2008.
[3] G. Gregoriadis, “Liposomes as drug carriers: recent trends and progress,” Wiley, 1988.
[4] A. D. Bangham, “Review of lasic, liposomes: from physics to applications,” Biophysical Journal, vol. 67, no. 3, pp. 1358, 1994.
[5] V. P. Torchilin, V. Torchilin, and V. Weissig, “Liposomes: a practical approach,” Oxford University Press, 2003.
[6] R. K. Subedi, S. Y. Oh, M. K. Chun, and H. K. Choi, “Recent advances in transdermal drug delivery,” Archives of Pharmacal Research, vol. 33, pp. 339-351, 2010.
[7] G. Cevc, “Lipid vesicles and other colloids as drug carriers on the skin,” Advanced Drug Delivery Reviews, vol. 56, no. 5, pp. 675-711, 2004.
[8] H. Anwekar, S. Patel, and A. Singhai, “Liposome-as drug carriers,” International Journal of Pharmacy & Life Sciences, vol. 2, no. 7, pp. 945-951, 2011.
[9] S. Bhattacharya and S. Haldar, “Interactions between cholesterol and lipids in bilayer membranes. role of lipid headgroup and hydrocarbon chain–backbone linkage,” Biochimica et Biophysica Acta (BBA)-Biomembranes, vol. 1467, no. 1, pp. 39-53, 2000.
[10] Y. C. Chung and S. L. Regen, “Counterion control over the barrier properties of bilayers derived from double-chain ionic surfactants,” Langmuir, vol. 9, no. 7, pp. 1937-1939, 1993.
[11] S. Bhattacharya and S. Haldar, “The effects of cholesterol inclusion on the vesicular membranes of cationic lipids,” Biochimica et Biophysica Acta (BBA)-Biomembranes, vol. 1283, no. 1, pp. 21-30, 1996.
[12] M. J. Blandamer, B. Briggs, P. M. Cullis, B. J. Rawlings, and J. B. Engberts, “Vesicle-cholesterol interactions: effects of added cholesterol on gel-to-liquid crystal transitions in a phospholipid membrane and five dialkyl-based vesicles as monitored using DSC,” Physical Chemistry Chemical Physics, vol. 5, no. 23, pp. 5309-5312, 2003.
[13] C. Tondre and C. Caillet, “Properties of the amphiphilic films in mixed cationic/anionic vesicles: a comprehensive view from a literature analysis,” Advances in Colloid and Interface Science, vol. 93, no. 1-3, pp. 115-134, 2001.
[14] E. W. Kaler, A. K. Murthy, B. E. Rodriguez, and J. A. Zasadzinski, “Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants,” Science, vol. 245, no. 4924, pp. 1371-1374, 1989.
[15] E. Marques, O. Regev, A. Khan, and B. Lindman, “Self-organization of double-chained and pseudodouble-chained surfactants: counterion and geometry effects,” Advances in Colloid and Interface Science, vol. 100, pp. 83-104, 2003.
[16] W. Y. Yu, Y. M. Yang, and C. H. Chang, “Cosolvent effects on the spontaneous formation of vesicles from 1:1 anionic and cationic surfactant mixtures,” Langmuir, vol. 21, no. 14, pp. 6185-6193, 2005.
[17] J. H. Lee, J. P. Gustin, T. Chen, G. F. Payne, and S. R. Raghavan, “Vesicle- biopolymer gels: networks of surfactant vesicles connected by associating biopolymers,” Langmuir, vol. 21, no. 1, pp. 26-33, 2005.
[18] R. D. Koehler, S. R. Raghavan, and E. W. Kaler, “Microstructure and dynamics of wormlike micellar solutions formed by mixing cationic and anionic surfactants,” The Journal of Physical Chemistry B, vol. 104, no. 47, pp. 11035-11044, 2000.
[19] C. Chien, S. Yeh, Y. Yang, C. Chang, and J. Maa, “Formation and encapsulation of catanionic vesicles,” Journal of Colloid and Interface Science, vol. 24, pp. 31-45, 2002.
[20] S. J. Yeh, Y. M. Yang, and C. H. Chang, “Cosolvent effects on the stability of catanionic vesicles formed from ion-pair amphiphiles,” Langmuir, vol. 21, no. 14, pp. 6179-6184, 2005.
[21] W. H. Lee, Y. L. Tang, T. C. Chiu, and Y. M. Yang, “Synthesis of ion-pair amphiphiles and calorimetric study on the gel to liquid-crystalline phase transition behavior of their bilayers,” Journal of Chemical & Engineering Data, vol. 60, no. 4, pp. 1119-1125, 2015.
[22] E. Soussan, S. Cassel, M. Blanzat, and I. Rico‐Lattes, “Drug delivery by soft matter: matrix and vesicular carriers,” Angewandte Chemie International Edition, vol. 48, no. 2, pp. 274-288, 2009.
[23] V. Tomašić and T. Mihelj, “The review on properties of solid catanionic surfactants: main applications and perspectives of new catanionic surfactants and compounds with catanionic assisted synthesis,” Journal of Dispersion Science and Technology, vol. 38, no. 4, pp. 515-544, 2017.
[24] D. D. Lasic, “The mechanism of vesicle formation,” Biochemical Journal, vol. 256, no. 1, pp. 1-11, 1988.
[25] K. C. Wu, Z. L. Huang, Y. M. Yang, C. H. Chang, and T. H. Chou, “Enhancement of catansome formation by means of cosolvent effect: semi-spontaneous preparation method,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 302, no. 1-3, pp. 599-607, 2007.
[26] Y. M. Yang, K. C. Wu, Z. L. Huang, and C. H. Chang, “On the stability of liposomes and catansomes in aqueous alcohol solutions,” Langmuir, vol. 24, no. 5, pp. 1695-1700, 2008.
[27] Z. L. Huang, J. Y. Hong, C. H. Chang, and Y. M. Yang, “Gelation of charged catanionic vesicles prepared by a semispontaneous process,” Langmuir, vol. 26, no. 4, pp. 2374-2382, 2010.
[28] Y. S. Liu, C. F. Wen, and Y. M. Yang, “Development of ethosome-like catanionic vesicles for dermal drug delivery,” Journal of the Taiwan Institute of Chemical Engineers, vol. 43, no. 6, pp. 830-838, 2012.
[29] C. W. Chiu, C. H. Chang, and Y. M. Yang, “Ethanol effects on the gelation behavior of α-tocopherol acetate-encapsulated ethosomes with water-soluble polymers,” Colloid and Polymer Science, vol. 291, pp. 1341-1352, 2013.
[30] Y. S. Liu, C. F. Wen, and Y. M. Yang, “Cholesterol effects on the vesicular membrane rigidity and drug encapsulation efficiency of ethosome-like catanionic vesicles,” Science of Advanced Materials, vol. 6, no. 5, pp. 954-962, 2014.
[31] T. Bramer, M. Paulsson, K. Edwards, and K. Edsman, “Catanionic drug-surfactant mixtures: phase behavior and sustained release from gels,” Pharmaceutical Research, vol. 20, pp. 1661-1667, 2003.
[32] H. M. Patel, “Liposomes: a practical approach,” Oxford University Press, 1990.
[33] G. Cevc and G. Blume, “Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force,” Biochimica et Biophysica Acta (BBA)-Biomembranes, vol. 1104, no. 1, pp. 226-232, 1992.
[34] E. Touitou, N. Dayan, L. Bergelson, B. Godin, and M. Eliaz, “Ethosomes-novel vesicular carriers for enhanced delivery: characterization and skin penetration properties,” Journal of Controlled Release, vol. 65, no. 3, pp. 403-418, 2000.
[35] B. Godin and E. Touitou, “Ethosomes: new prospects in transdermal delivery,” Critical Reviews™ in Therapeutic Drug Carrier Systems, vol. 20, no. 1, 2003.
[36] P. K. Jaiswal, S. Kesharwani, R. Kesharwani, and D. K. Patel, “Ethosome: A new technology used as topical & transdermal delivery system,” Journal of Drug Delivery and Therapeutics, vol. 6, no. 3, pp. 7-17, 2016.
[37] 謝佑翎, “乙醇與膽固醇對DPPC脂質體雙層膜特性之影響,” 化學工程學系, 國立成功大學, 台南市, 2017.
[38] 鄭嘉瑜, “以螢光偏極化技術探討膽固醇對離子對雙親分子液胞雙層膜堅硬度的影響,” 化學工程學系, 國立成功大學, 台南市, 2019.
[39] E. R. Bendas and M. I. Tadros, “Enhanced transdermal delivery of salbutamol sulfate via ethosomes,” Aaps Pharmscitech, vol. 8, pp. 213-220, 2007.
[40] C. W. Chiu, C. H. Chang, and Y. M. Yang, “Gelation of ethosome-like catanionic vesicles by water-soluble polymers: ethanol and cholesterol effects,” Soft Matter, vol. 9, no. 31, pp. 7628-7636, 2013.
[41] 孫珮綺, “膽固醇對陰陽離子液胞之物理穩定性、粒徑、雙層膜堅硬度和親水性藥物包覆效率的影響,” 化學工程學系, 國立成功大學, 台南市, 2022.
[42] A. B. Scott, H. Tartar, and E. Lingafelter, “Electrolytic properties of aqueous solutions of octyltrimethylammonium octanesulfonate and decyltrimethylammonium decanesulfonate,” Journal of the American Chemical Society, vol. 65, no. 4, pp. 698-701, 1943.
[43] P. Jokela, B. Joensson, and A. Khan, “Phase equilibria of catanionic surfactant-water systems,” Journal of Physical Chemistry, vol. 91, no. 12, pp. 3291-3298, 1987.
[44] J. N. Israelachvili, “Intermolecular and surface forces,” Academic press, 2011.
[45] C. Teixeira, M. Blanzat, J. Koetz, I. Rico-Lattes, and G. Brezesinski, “In-plane miscibility and mixed bilayer microstructure in mixtures of catanionic glycolipids and zwitterionic phospholipids,” Biochimica et Biophysica Acta (BBA)-Biomembranes, vol. 1758, no. 11, pp. 1797-1808, 2006.
[46] S. B. Chauhan and V. Gupta, “Recent advances in liposome,” Research Journal of Pharmacy and Technology, vol. 13, no. 4, pp. 2053-2058, 2020.
[47] H. Nsairat, D. Khater, U. Sayed, F. Odeh, A. Al Bawab, and W. Alshaer, “Liposomes: structure, composition, types, and clinical applications,” Heliyon, vol. 8, no. 5, pp. e09394, 2022.
[48] H. Fukuda, K. Kawata, H. Okuda, and S. L. Regen, “Bilayer-forming ion pair amphiphiles from single-chain surfactants,” Journal of the American Chemical Society, vol. 112, no. 4, pp. 1635-1637, 1990.
[49] M. R. Prausnitz and R. Langer, “Transdermal drug delivery,” Nature Biotechnology, vol. 26, no. 11, pp. 1261-1268, 2008.
[50] G. Satyam, S. Shivani, and G. Garima, “Ethosomes: A novel tool for drug delivery through the skin,” Journal of Pharmaceutical Research, vol. 3, no. 4, pp. 688-91, 2010.
[51] E. Pilch and W. Musiał, “Liposomes with an ethanol fraction as an application for drug delivery,” International Journal of Molecular Sciences, vol. 19, no. 12, pp. 3806, 2018.
[52] P. Verma and K. Pathak, “Therapeutic and cosmeceutical potential of ethosomes: an overview,” Journal of Advanced Pharmaceutical Technology & Research, vol. 1, no. 3, pp. 274, 2010.
[53] J. B. Huang, B. Y. Zhu, M. Mao, P. He, J. Wang, and X. He, “Vesicle formation of 1:1 cationic and anionic surfactant mixtures in nonaqueous polar solvents,” Colloid and Polymer Science, vol. 277, pp. 354-360, 1999.
[54] J. B. Huang, B. Y. Zhu, G. X. Zhao, and Z. Y. Zhang, “Vesicle formation of a 1:1 catanionic surfactant mixture in ethanol solution,” Langmuir, vol. 13, no. 21, pp. 5759-5761, 1997.
[55] C. Wang, S. Tang, J. Huang, X. Zhang, and H. Fu, “Transformation from precipitates to vesicles in mixed cationic and anionic surfactant systems,” Colloid and Polymer Science, vol. 280, pp. 770-774, 2002.
[56] J. B. Huang and G. X. Zhao, “Formation and coexistence of the micelles and vesicles in mixed solution of cationic and anionic surfactant,” Colloid and Polymer Science, vol. 273, pp. 156-164, 1995.
[57] X. R. Zhang, J. B. Huang, M. Mao, S. Tang, and B. Y. Zhu, “From precipitation to vesicles: a study on self-organized assemblies by alkylammonium and its mixtures in polar solvents,” Colloid and Polymer Science, vol. 279, pp. 1245-1249, 2001.
[58] H. I. Petrache, T. Zemb, L. Belloni, and V. A. Parsegian, “Salt screening and specific ion adsorption determine neutral-lipid membrane interactions,” Proceedings of the National Academy of Sciences, vol. 103, no. 21, pp. 7982-7987, 2006.
[59] E. Evans and D. Needham, “Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion and colloidal interactions,” Journal of Physical Chemistry, vol. 91, no. 16, pp. 4219-4228, 1987.
[60] D. Grasso, K. Subramaniam, M. Butkus, K. Strevett, and J. Bergendahl, “A review of non-DLVO interactions in environmental colloidal systems,” Reviews in Environmental Science and Biotechnology, vol. 1, pp. 17-38, 2002.
[61] J. Sabın, G. Prieto, J. M. Ruso, R. Hidalgo-Alvarez, and F. Sarmiento, “Size and stability of liposomes: a possible role of hydration and osmotic forces,” The European Physical Journal E, vol. 20, pp. 401-408, 2006.
[62] M. F. Brown, R. L. Thurmond, S. W. Dodd, D. Otten, and K. Beyer, “Elastic deformation of membrane bilayers probed by deuterium NMR relaxation,” Journal of the American Chemical Society, vol. 124, no. 28, pp. 8471-8484, 2002.
[63] J. Y. Walz and E. Ruckenstein, “Comparison of the van der Waals and undulation interactions between uncharged lipid bilayers,” The Journal of Physical Chemistry B, vol. 103, no. 35, pp. 7461-7468, 1999.
[64] D. A. Mannock, R. N. Lewis, and R. N. McElhaney, “Comparative calorimetric and spectroscopic studies of the effects of lanosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes,” Biophysical Journal, vol. 91, no. 9, pp. 3327-3340, 2006.
[65] X. Bin and J. Lipkowski, “Electrochemical and PM-IRRAS studies of the effect of cholesterol on the properties of the headgroup region of a DMPC bilayer supported at a Au (111) electrode,” The Journal of Physical Chemistry B, vol. 110, no. 51, pp. 26430-26441, 2006.
[66] G. Cevc, “Hydration force and the interfacial structure of the polar surface,” Journal of the Chemical Society, Faraday Transactions, vol. 87, no. 17, pp. 2733-2739, 1991.
[67] T. J. McIntosh, A. D. Magid, and S. A. Simon, “Cholesterol modifies the short-range repulsive interactions between phosphatidylcholine membranes,” Biochemistry, vol. 28, no. 1, pp. 17-25, 1989.
[68] M. Lönnfors, O. Engberg, B. R. Peterson, and J. P. Slotte, “Interaction of 3β-amino-5-cholestene with phospholipids in binary and ternary bilayer membranes,” Langmuir, vol. 28, no. 1, pp. 648-655, 2012.
[69] C. Silva, F. J. Aranda, A. Ortiz, V. Martínez, M. Carvajal, and J. A. Teruel, “Molecular aspects of the interaction between plants sterols and DPPC bilayers: an experimental and theoretical approach,” Journal of Colloid and Interface Science, vol. 358, no. 1, pp. 192-201, 2011.
[70] K. J. Fritzsching, J. Kim, and G. P. Holland, “Probing lipid-cholesterol interactions in DOPC/eSM/Chol and DOPC/DPPC/Chol model lipid rafts with DSC and 13C solid-state NMR,” Biochimica et Biophysica Acta (BBA)-Biomembranes, vol. 1828, no. 8, pp. 1889-1898, 2013.
[71] M. G. Benesch and R. N. McElhaney, “A comparative calorimetric study of the effects of cholesterol and the plant sterols campesterol and brassicasterol on the thermotropic phase behavior of dipalmitoylphosphatidylcholine bilayer membranes,” Biochimica et Biophysica Acta (BBA)-Biomembranes, vol. 1838, no. 7, pp. 1941-1949, 2014.
[72] Y. Konno, N. Naito, A. Yoshimura, and K. Aramaki, “A study on the formation of liquid ordered phase in lysophospholipid/cholesterol/1, 3-butanediol/water and lysophospholipid/ceramide/1, 3-butanediol/water systems,” Journal of Oleo Science, vol. 63, no. 8, pp. 823-828, 2014.
[73] M. R. Krause, M. Wang, L. Mydock-McGrane, D. F. Covey, E. Tejada, P. F. Almeida, and S. L. Regen, “Eliminating the roughness in cholesterol’s β-face: does it matter?,” Langmuir, vol. 30, no. 41, pp. 12114-12118, 2014.
[74] M. G. Benesch, R. N. Lewis, and R. N. McElhaney, “A calorimetric and spectroscopic comparison of the effects of cholesterol and its immediate biosynthetic precursors 7-dehydrocholesterol and desmosterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes,” Chemistry and Physics of Lipids, vol. 191, pp. 123-135, 2015.
[75] M. G. Benesch, R. N. Lewis, D. A. Mannock, and R. N. McElhaney, “A DSC and FTIR spectroscopic study of the effects of the epimeric cholestan-3-ols and cholestan-3-one on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes: Comparison with their 5-cholesten analogs,” Chemistry and Physics of Lipids, vol. 187, pp. 34-49, 2015.
[76] K. Aramaki, Y. Watanabe, J. Takahashi, Y. Tsuji, A. Ogata, and Y. Konno, “Charge boosting effect of cholesterol on cationic liposomes,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 506, pp. 732-738, 2016.
[77] E. El Khoury and D. Patra, “Length of hydrocarbon chain influences location of curcumin in liposomes: curcumin as a molecular probe to study ethanol induced interdigitation of liposomes,” Journal of Photochemistry and Photobiology B: Biology, vol. 158, pp. 49-54, 2016.
[78] T. A. Daly, M. Wang, and S. L. Regen, “The origin of cholesterol’s condensing effect,” Langmuir, vol. 27, no. 6, pp. 2159-2161, 2011.
[79] M. R. Krause, S. Turkyilmaz, and S. L. Regen, “Surface occupancy plays a major role in cholesterol’s condensing effect,” Langmuir, vol. 29, no. 33, pp. 10303-10306, 2013.
[80] R. Alenaizi, S. Radiman, I. A. Rahman, and F. Mohamed, “Zwitterionic betaine transition from micelles to vesicles induced by cholesterol,” Journal of Molecular Liquids, vol. 223, pp. 1226-1233, 2016.
[81] T. T. Bui, K. Suga, and H. Umakoshi, “Roles of sterol derivatives in regulating the properties of phospholipid bilayer systems,” Langmuir, vol. 32, no. 24, pp. 6176-6184, 2016.
[82] J. Yang, J. Martí, and C. Calero, “Pair interactions among ternary DPPC/POPC/cholesterol mixtures in liquid-ordered and liquid-disordered phases,” Soft Matter, vol. 12, no. 20, pp. 4557-4561, 2016.
[83] W. J. Tien, K. Y. Chen, F. Y. Huang, and C. C. Chiu, “Effects of cholesterol on water permittivity of biomimetic ion pair amphiphile bilayers: Interplay between membrane bending and molecular packing,” International Journal of Molecular Sciences, vol. 20, no. 13, pp. 3252, 2019.
[84] 賴宇芳, “運用分子模擬探討乙醇共溶劑與膽固醇添加劑對離子對雙親分子雙層膜的結構、機械與相態特性之綜合影響,” 化學工程學系, 國立成功大學, 台南市, 2020.
[85] C. F. Wen, Y. L. Hsieh, C. W. Wang, T. Y. Yang, C. H. Chang, and Y. M. Yang, “Effects of ethanol and cholesterol on thermotropic phase behavior of ion-pair amphiphile bilayers,” Journal of Oleo Science, vol. 67, no. 3, pp. 295-302, 2017.
[86] W. H. Chang, Y. T. Chuang, C. Y. Yu, C. H. Chang, and Y. M. Yang, “Effects of sterol-like additives on phase transition behavior of ion-pair amphiphile bilayers,” Journal of Oleo Science, vol. 66, no. 11, pp. 1229-1238, 2017.
[87] F. de Meyer and B. Smit, “Effect of cholesterol on the structure of a phospholipid bilayer,” Proceedings of the National Academy of Sciences, vol. 106, no. 10, pp. 3654-3658, 2009.
[88] C. Y. Cheng, Y. F. Lai, Y. L. Hsieh, C. H. Wu, C. C. Chiu, and Y. M. Yang, “Divergent effects of cholesterol on the structure and fluidity of liposome and catanionic vesicle membranes,” Febs Letters, vol. 596, no. 14, pp. 1827-1838, 2022.
[89] 吳旌豪, “以螢光偏極化技術探討乙醇及膽固醇對陰陽離子液胞雙層膜堅硬度的影響,” 化學工程學系, 國立成功大學, 台南市, 2020.
[90] J. A. Barry and K. Gawrisch, “Direct NMR evidence for ethanol binding to the lipid-water interface of phospholipid-bilayers,” Biochemistry, vol. 33, no. 26, pp. 8082-8088, 1994.
[91] J. Michl and E. W. Thulstrup, “Spectroscopy with polarized light: solute alignment by photoselection in liquid crystals, polymers and membranes,” Liquid Crystals, Polymers, and Membranes, VCH publishers, 1995.
[92] B. Valeur and M. N. Berberan-Santos, “Molecular fluorescence: principles and applications,” John Wiley & Sons, 2012.
[93] H. L. Casal and H. H. Mantsch, “Polymorphic phase-behavior of phospholipid-membranes studied by infrared-spectroscopy,” Biochimica Et Biophysica Acta, vol. 779, no. 4, pp. 381-401, 1984.
[94] A. Blume, “Properties of lipid vesicles: FT-IR spectroscopy and fluorescence probe studies,” Current Opinion in Colloid & Interface Science, vol. 1, no. 3, pp. 431-431, 1996.
[95] W. I. Goldburg, “Dynamic light scattering,” American Journal of Physics, vol. 67, no. 12, pp. 1152-1160, 1999.
[96] “Fluorescence polarization-technical resource guide,” Invitrogen, 2006.
[97] FL WinLab v4.00 for LS-45/5550B-螢光光譜儀操作手冊.
[98] J. W. Zeng, K. E. Smith, and P. L. G. Chong, “Effects of alchol-induced lipid interdigitation on proton permeability in l-α-dipalmitoylphosphatidylcholine vesicle,” Biophysical Journal, vol. 65, no. 4, pp. 1404-1414, 1993.
[99] H. Komatsu and E. S. Rowe, “Effect of cholesterol on the ethanol-induced interdigitated gel phase in phosphatidylcholine - use of fluorophore pyrene-labeled phosphatidylcholine,” Biochemistry, vol. 30, no. 9, pp. 2463-2470, 1991.
[100] L. G. Roth and C. H. Chen, “Thermodynamic elucidation of ethanol-induced interdigitation of hydrocarbon chains in phosphatidylcholine bilayer vesicles,” Journal of Physical Chemistry, vol. 95, no. 20, pp. 7955-7959, 1991.
[101] D. Bach, N. Borochov and E. Wachtel, “Phase separation of cholesterol and the interaction of ethanol with phosphatidylserine-cholesterol bilayer membranes,” Chemistry and Physics of Lipids, vol. 114, no. 2, pp. 123-130, 2002.
[102] E. R. Bendas and M. I. Tadros, “Enhanced transdermal delivery of salbutamol sulfate via ethosomes,” Aaps Pharmscitech, vol. 8, pp. 213-220, 2007.
[103] S. Jain, N. Patel, P. Madan, and S. Lin, “Quality by design approach for formulation, evaluation and statistical optimization of diclofenac-loaded ethosomes via transdermal route,” Pharmaceutical Development and Technology, vol. 20, no. 4, pp. 473-489, 2015.
[104] K. J. Tierney, D. E. Block, and M. L. Longo, “Elasticity and phase behavior of DPPC membrane modulated by cholesterol, ergosterol, and ethanol,” Biophysical Journal, vol. 89, no. 4, pp. 2481-2493, 2005.
[105] M. Dizechi and E. Marschall, “Viscosity of some binary and ternary liquid mixtures,” Journal of Chemical and Engineering Data, vol. 27, no. 3, pp. 358-363, 1982.
[106] M. Martinez-Reina and E. Amado-González, “Refractive indices, densities and excess properties of binary mixtures of ethanol with hexane, heptane, octane and water at (293.15, 298.15, 303.15, and 308.15) K,” Bistua: Revista de la Facultad de Ciencias Básicas, vol. 8, no. 2, pp. 1-10, 2010.
[107] E. R. Bendas and M. I. Tadros, “Enhanced transdermal delivery of salbutamol sulfate via ethosomes,” Aaps Pharmscitech, vol. 8, no. 4, pp. 8, 2007.
[108] S. D. Maurya, “Enhanced transdermal permeation of indinavir sulphate through stratum corneum via, novel permeation enhancers: ethosomes,” Der Pharmacia Lettre, vol. 2, no. 5, pp. 208-220, 2010.
[109] 陳怡廷, “溫度和酸鹼度對類三碳鏈離子對雙親分子 /膽固醇混合系統形成之帶正電陰陽離子液胞特性的影響,” 化學工程學系, 國立成功大學, 台南市, 2021.
[110] H. H. Mantsch, “Biological applications of fourier transform infrared spectroscopy: a study of phase transitions in biomembranes,” Journal of Molecular Structure, vol. 113, pp. 201-212, 1984.
[111] S. D. Maurya, “Enhanced transdermal permeation of indinavir sulphate through stratum corneum via, novel permeation enhancers: ethosomes,” Der Pharmacia Lettre, vol. 2, no. 5, pp. 208-220, 2010.