| 研究生: |
郭芳吟 Kuo, Feng-Yin |
|---|---|
| 論文名稱: |
重組腫瘤內皮標誌1對於纖維母細胞生物活性的影響 The effect of recombinant tumor endothelial marker 1 on the biological activities of fibroblast |
| 指導教授: |
吳華林
Wu, Hua-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 腫瘤內皮標誌1 、纖維母細胞 、傷口癒合 |
| 外文關鍵詞: | Tumor endothelial marker 1, fibroblasts, wound healing |
| 相關次數: | 點閱:81 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
腫瘤內皮標誌1屬於第一型穿膜醣蛋白質,被歸類在C型凝集素家族中,此蛋白分子是由6個功能區所構成,分別是類凝集素功能區(TEM1D1)、類壽司功能區(TEM1D2)、三重複類表皮生長因子功能區(TEM1D3)、黏液素功能區(TEM1D4)、穿膜功能區(TEM1D5)和細胞質內功能區(TEM1D6)。腫瘤內皮標誌1主要表現在基質細胞上,包括纖維母細胞和週細胞。纖維母細胞除了能分泌且調控細胞外基質的平衡外亦會影響表皮細胞的分化、發炎反應以及傷口癒合。在先前的文獻中指出,降低纖維母細胞對於腫瘤內皮標誌1的表現同時也會使纖維母細胞增生和爬行的能力下降。而目前關於腫瘤內皮標誌1的研究多是集中在探討內源性腫瘤內皮標誌1的功能,對於外源性或水溶性腫瘤內皮標誌1的功能目前尚未清楚。因此我們利用哺乳類表現系統純化出重組腫瘤內皮標誌1的細胞外功能區蛋白 (rTEM1D1-4),並用以模擬外源性腫瘤內皮標誌1的功能。纖維母細胞在重組腫瘤內皮標誌1的細胞外功能區蛋白的處理下,其生長狀況顯著增加。重組腫瘤內皮標誌1的細胞外功能區蛋白亦具有吸引纖維母細胞爬行的功能。在重組腫瘤內皮標誌1的細胞外功能區蛋白刺激下,纖維母細胞的訊息傳遞分子ERK、JNK、p38會被活化。在共同處理抑制劑後發現重組腫瘤內皮標誌1的細胞外功能區蛋白促進纖維母細胞的增生是透過p38的活化。另一方面,由於在傷口癒合過程中纖維母細胞是影響癒合的重要細胞之一,因此我們利用鏈脲佐菌素 (Streptozotocin) 誘導的糖尿病小鼠進行皮膚傷口癒合實驗。結果顯示,給予重組腫瘤內皮標誌1的細胞外功能區蛋白對於傷口癒合有些微促進效果。綜合以上結果,我們發現腫瘤內皮標誌1細胞外功能區蛋白對於纖維母細胞有顯著提升細胞增生的效果,且能吸引纖維母細胞的爬行,但是在糖尿病傷口治療上尚未發現有顯著的療效。
Fibroblasts are the major cells in the stroma tissue. Fibroblasts in the epidermal region play an important role in regulating extracellular matrix (ECM) homeostasis, epithelial differentiation, inflammation and wound healing. Tumor endothelial marker 1 (TEM1), also known as CD248 or endosialin, belongs to the C-type lectin protein family 14. It is composed of 6 domains, including an N-terminal C-type lectin-like domain (D1), a sushi-like domain (D2), a three-repeated epidermal growth factor (EGF)-like domain (D3), a mucin-like domain (D4), a transmembrane domain (D5), and a cytoplasmic domain (D6). Previous studies demonstrated that TEM1 is expressed on the surface of stromal cells such as fibroblasts and pericytes. In previous study, it was reported that silencing of endogenous TEM1 in fibroblasts could reduce cell viability. However, the function of soluble exogenous TEM1 remains largely undetermined. Hence, we want to identify the biological function of soluble form TEM1 through the treatment of recombinant extracellular domain of TEM1 (rTEM1D1-4) on fibroblasts. First, rTEM1D1-4 was prepared using mammalian expression system. Treatment of purified rTEM1D1-4 can increase fibroblasts viability and attracts fibroblasts migration. In addition, we also exam the ability of rTEM1D1 and rTEM1D3 which were prepared using pichia expression system. Results showed that only rTEM1D1-4 but not rTEM1D1 and rTEM1D3 can significantly promote fibroblasts viability. Further, the signaling molecules in fibroblasts, including ERK, JNK and p38, were activated by treatment with rTEM1D1-4. By co-treatment with inhibitors, we found that rTEM1D1-4 promotes fibroblasts viability via activation of p38. To show the therapeutic effects of rTEM1D1-4, we use streptozotocin (STZ)-induced diabetic mice to perform cutaneous wound healing experiments. Local administration of rTEM1D1-4 to the wound site slightly improved wound healing in STZ-induced diabetic mice. In summary, we found that rTEM1D1-4 significantly improved fibroblasts viability and attracted fibroblasts migration in vitro, but its effects on wound healing in diabetic mice needs to be further investigated.
1. Bagley, R. G., W. Weber, C. Rouleau, M. Yao, N. Honma, S. Kataoka, I. Ishida, B. L. Roberts and B. A. Teicher (2009). "Human mesenchymal stem cells from bone marrow express tumor endothelial and stromal markers." Int J Oncol 34(3): 619-627.
2. Betsholtz, C. (2004). "Insight into the physiological functions of PDGF through genetic studies in mice." Cytokine & growth factor reviews 15(4): 215-228.
3. Christian, S., H. Ahorn, A. Koehler, F. Eisenhaber, H.-P. Rodi, P. Garin-Chesa, J. E. Park, W. J. Rettig and M. C. Lenter (2001). "Molecular cloning and characterization of endosialin, a C-type lectin-like cell surface receptor of tumor endothelium." Journal of Biological Chemistry 276(10): 7408-7414.
4. Christian, S., R. Winkler, I. Helfrich, A. M. Boos, E. Besemfelder, D. Schadendorf and H. G. Augustin (2008). "Endosialin (Tem1) is a marker of tumor-associated myofibroblasts and tumor vessel-associated mural cells." The American journal of pathology 172(2): 486-494.
5. Darby, I. A., T. Bisucci, T. D. Hewitson and D. G. MacLellan (1997). "Apoptosis is increased in a model of diabetes-impaired wound healing in genetically diabetic mice." Int J Biochem Cell Biol 29(1): 191-200.
6. Desta, T., J. Li, T. Chino and D. T. Graves (2010). "Altered Fibroblast Proliferation and Apoptosis in Diabetic Gingival Wounds." Journal of Dental Research 89(6): 609-614.
7. Falanga, V. (2005). "Wound healing and its impairment in the diabetic foot." Lancet 366(9498): 1736-1743.
8. Fujii, S., A. Fujihara, K. Natori, A. Abe, Y. Kuboki, Y. Higuchi, M. Aizawa, T. Kuwata, T. Kinoshita, W. Yasui and A. Ochiai (2015). "TEM1 expression in cancer-associated fibroblasts is correlated with a poor prognosis in patients with gastric cancer." Cancer Med 4(11): 1667-1678.
9. Galiano, R. D., O. M. Tepper, C. R. Pelo, K. A. Bhatt, M. Callaghan, N. Bastidas, S. Bunting, H. G. Steinmetz and G. C. Gurtner (2004). "Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells." Am J Pathol 164(6): 1935-1947.
10. Graham, M. L., J. L. Janecek, J. A. Kittredge, B. J. Hering and H.-J. Schuurman (2011). "The Streptozotocin-Induced Diabetic Nude Mouse Model: Differences between Animals from Different Sources." Comparative Medicine 61(4): 356-360.
11. Grose, R. and S. Werner (2004). "Wound-healing studies in transgenic and knockout mice." Mol Biotechnol 28(2): 147-166.
12. Gurtner, G. C., S. Werner, Y. Barrandon and M. T. Longaker (2008). "Wound repair and regeneration." Nature 453(7193): 314-321.
13. Herzog, C., A. Lorenz, H. J. Gillmann, A. Chowdhury, J. Larmann, T. Harendza, F. Echtermeyer, M. Muller, M. Schmitz, J. Stypmann, D. G. Seidler, M. Damm, S. N. Stehr, T. Koch, K. C. Wollert, E. M. Conway and G. Theilmeier (2014). "Thrombomodulin's lectin-like domain reduces myocardial damage by interfering with HMGB1-mediated TLR2 signalling." Cardiovasc Res 101(3): 400-410.
14. Hinz, B., G. Celetta, J. J. Tomasek, G. Gabbiani and C. Chaponnier (2001). "Alpha-Smooth Muscle Actin Expression Upregulates Fibroblast Contractile Activity." Molecular Biology of the Cell 12(9): 2730-2741.
15. Jechlinger, M., A. Sommer, R. Moriggl, P. Seither, N. Kraut, P. Capodiecci, M. Donovan, C. Cordon-Cardo, H. Beug and S. Grunert (2006). "Autocrine PDGFR signaling promotes mammary cancer metastasis." J Clin Invest 116(6): 1561-1570.
16. Jin, K., X. O. Mao, G. Del Rio Guerra, L. Jin and D. A. Greenberg (2005). "Heparin-binding epidermal growth factor-like growth factor stimulates cell proliferation in cerebral cortical cultures through phosphatidylinositol 3'-kinase and mitogen-activated protein kinase." J Neurosci Res 81(4): 497-505.
17. Kim, W. J., R. R. Mohan, R. R. Mohan and S. E. Wilson (1999). "Effect of PDGF, IL-1alpha, and BMP2/4 on corneal fibroblast chemotaxis: expression of the platelet-derived growth factor system in the cornea." Invest Ophthalmol Vis Sci 40(7): 1364-1372.
18. Lax, S., D. L. Hardie, A. Wilson, M. R. Douglas, G. Anderson, D. Huso, C. M. Isacke and C. D. Buckley (2010). "The pericyte and stromal cell marker CD248 (endosialin) is required for efficient lymph node expansion." European journal of immunology 40(7): 1884-1889.
19. Lerman, O. Z., R. D. Galiano, M. Armour, J. P. Levine and G. C. Gurtner (2003). "Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia." Am J Pathol 162(1): 303-312.
20. Li, Y. H., C. H. Kuo, G. Y. Shi and H. L. Wu (2012). "The role of thrombomodulin lectin-like domain in inflammation." J Biomed Sci 19: 34.
21. Liu, R., T. Desta, H. He and D. T. Graves (2004). "Diabetes alters the response to bacteria by enhancing fibroblast apoptosis." Endocrinology 145(6): 2997-3003.
22. Lobmann, R., A. Ambrosch, G. Schultz, K. Waldmann, S. Schiweck and H. Lehnert (2002). "Expression of matrix-metalloproteinases and their inhibitors in the wounds of diabetic and non-diabetic patients." Diabetologia 45(7): 1011-1016.
23. Lovvorn, H. N., 3rd, D. T. Cheung, M. E. Nimni, N. Perelman, J. M. Estes and N. S. Adzick (1999). "Relative distribution and crosslinking of collagen distinguish fetal from adult sheep wound repair." J Pediatr Surg 34(1): 218-223.
24. MacFadyen, J., K. Savage, D. Wienke and C. M. Isacke (2007). "Endosialin is expressed on stromal fibroblasts and CNS pericytes in mouse embryos and is downregulated during development." Gene Expr Patterns 7(3): 363-369.
25. Maia, M., A. de Vriese, T. Janssens, M. Moons, K. van Landuyt, J. Tavernier, R. J. Lories and E. M. Conway (2010). "CD248 and its cytoplasmic domain: a therapeutic target for arthritis." Arthritis Rheum 62(12): 3595-3606.
26. Maia, M., A. DeVriese, T. Janssens, M. Moons, R. J. Lories, J. Tavernier and E. M. Conway (2011). "CD248 facilitates tumor growth via its cytoplasmic domain." BMC Cancer 11: 162.
27. Maruyama, K., J. Asai, M. Ii, T. Thorne, D. W. Losordo and P. A. D'Amore (2007). "Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing." Am J Pathol 170(4): 1178-1191.
28. Molenaar, J. C. (2003). "[From the library of the Netherlands Journal of Medicine. Rudolf Virchow: Die Cellularpathologie in ihrer Begrundung auf physiologische und pathologische Gewebelehre; 1858]." Ned Tijdschr Geneeskd 147(45): 2236-2244.
29. Nanda, A., B. Karim, Z. Peng, G. Liu, W. Qiu, C. Gan, B. Vogelstein, B. St. Croix, K. W. Kinzler and D. L. Huso (2006). "Tumor endothelial marker 1 (Tem1) functions in the growth and progression of abdominal tumors." Proceedings of the National Academy of Sciences of the United States of America 103(9): 3351-3356.
30. O'Shannessy, D. J., M. F. Smith, E. B. Somers, S. M. Jackson, E. Albone, B. Tomkowicz, X. Cheng, Y. Park, D. Fernando, A. Milinichik, B. Kline, R. Fulton, P. Oberoi and N. C. Nicolaides (2016). "Novel antibody probes for the characterization of endosialin/TEM-1." Oncotarget 7(43): 69420-69435.
31. Olokoba, A. B., O. A. Obateru and L. B. Olokoba (2012). "Type 2 Diabetes Mellitus: A Review of Current Trends." Oman Medical Journal 27(4): 269-273.
32. Opalenik, S. R. and J. M. Davidson (2005). "Fibroblast differentiation of bone marrow-derived cells during wound repair." Faseb j 19(11): 1561-1563.
33. Owen, J. L. and M. Mohamadzadeh (2013). "Macrophages and chemokines as mediators of angiogenesis." Frontiers in Physiology 4: 159.
34. Rybinski, K., H. Z. Imtiyaz, B. Mittica, B. Drozdowski, J. Fulmer, K. Furuuchi, S. Fernando, M. Henry, Q. Chao, B. Kline, E. Albone, J. Wustner, J. Lin, N. C. Nicolaides, L. Grasso and Y. Zhou (2015). "Targeting endosialin/CD248 through antibody-mediated internalization results in impaired pericyte maturation and dysfunctional tumor microvasculature." Oncotarget 6(28): 25429-25440.
35. Smith, S. W., A. P. Croft, H. L. Morris, A. J. Naylor, D. L. Huso, C. M. Isacke, C. O. Savage and C. D. Buckley (2015). "Genetic Deletion of the Stromal Cell Marker CD248 (Endosialin) Protects against the Development of Renal Fibrosis." Nephron 131(4): 265-277.
36. Smith, S. W., K. S. Eardley, A. P. Croft, J. Nwosu, A. J. Howie, P. Cockwell, C. M. Isacke, C. D. Buckley and C. O. Savage (2011). "CD248+ stromal cells are associated with progressive chronic kidney disease." Kidney Int 80(2): 199-207.
37. Tarin, D. and C. B. Croft (1969). "Ultrastructural features of wound healing in mouse skin." J Anat 105(Pt 1): 189-190.
38. Tomasek, J. J., G. Gabbiani, B. Hinz, C. Chaponnier and R. A. Brown (2002). "Myofibroblasts and mechano-regulation of connective tissue remodelling." Nat Rev Mol Cell Biol 3(5): 349-363.
39. Tomkowicz, B., K. Rybinski, B. Foley, W. Ebel, B. Kline, E. Routhier, P. Sass, N. C. Nicolaides, L. Grasso and Y. Zhou (2007). "Interaction of endosialin/TEM1 with extracellular matrix proteins mediates cell adhesion and migration." Proc Natl Acad Sci U S A 104(46): 17965-17970.
40. Tomkowicz, B., K. Rybinski, D. Sebeck, P. Sass, N. C. Nicolaides, L. Grasso and Y. Zhou (2010). "Endosialin/TEM-1/CD248 regulates pericyte proliferation through PDGF receptor signaling." Cancer biology & therapy 9(11): 908-915.
41. Tunyogi-Csapo, M., T. Koreny, C. Vermes, J. O. Galante, J. J. Jacobs and T. T. Glant (2007). "Role of fibroblasts and fibroblast-derived growth factors in periprosthetic angiogenesis." J Orthop Res 25(10): 1378-1388.
42. Werner, S., T. Krieg and H. Smola (2007). "Keratinocyte-fibroblast interactions in wound healing." J Invest Dermatol 127(5): 998-1008.
43. Zhang, Y., L. Cao, C. Kiani, B. L. Yang, W. Hu and B. B. Yang (1999). "Promotion of chondrocyte proliferation by versican mediated by G1 domain and EGF-like motifs." J Cell Biochem 73(4): 445-457.
44. Zheleznova, N. N., P. D. Wilson and A. Staruschenko (2011). "Epidermal growth factor-mediated proliferation and sodium transport in normal and PKD epithelial cells." Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1812(10): 1301-1313.
校內:2022-08-12公開