簡易檢索 / 詳目顯示

研究生: 周庭宇
Zhou, Ting-Yu
論文名稱: 溶解性有機質對Mn(II)與Cu(II)降解四環素之影響
Effects of dissolved organic matters on the degradation of tetracycline mediated by Mn(II) and Cu(II)
指導教授: 陳婉如
Chen, Wan-Ru
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 61
中文關鍵詞: 四環素天然有機質Mn(II)Cu(II)
外文關鍵詞: tetracycline, natural organic matter, Mn(II), Cu(II)
相關次數: 點閱:161下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 四環素(tetracycline)為一種常見的聚酮類廣譜抗生素,用於治療人類疾病與添加在動物飼料中促進生長,四環素具有較低的Kow值(辛醇-水分配係數)和高溶解度,因此傾向存在於水相之中,由於其廣效的抗菌能力且成本低廉,在醫療以及畜牧業的大量使用已使得四環素能在環境水體中被偵測到,若四環素長期地暴露在環境中,將可能對生態造成威脅或產生生物抗藥性等問題。先前有文獻指出,四環素能夠被水中溶氧經由螯合的Mn(II)或Cu(II)離子傳遞電子而氧化降解;天然有機質(NOM)為環境中普遍存在的物質,其結構上的官能基容易與金屬產生配位或螯合,因此,我們懷疑環境中溶解性有機質之存在很可能會影響四環素與金屬離子之結合並改變降解效果。本研究選擇數種有機質模型化合物(pyromellitic acid、alginic acid、Aldrich humic acid)、國際腐植質學會(IHSS)有機質和經採樣取得之環境有機質(鹽水溪河川水、鹽水溪底泥孔隙水、沙崙農場畜牧廢水),探討這些有機物如何影響Mn(II)與Cu(II)催化降解四環素。
    結果顯示,有機質在Mn與Cu之系統中都能略微抑制四環素的降解,由於有機質能與金屬螯合,降低了四環素受到金屬氧化降解的機會,且隨著有機質分子越大、疏水性越高與濃度越高,其抑制情形就越明顯 (抑制能力由高至低:humic acid > alginic acid > pyromellitic acid);競爭離子影響實驗中發現,在Mn的反應系統下,四環素之降解會明顯受到鈣、鎂離子抑制,而在Cu系統下則無明顯抑制效果,此是由於Mn與Cu在四環素結構上之螯合點位不同所致;此外,因為環境水樣中含有鹼度,會使Cu系統中的反應pH值上升,進而加速四環素之轉化速率;研究結果也顯示,溫度上升亦能夠增快四環素之降解(40℃ > 25℃ > 15℃)。整體而言,pH值、競爭離子與溫度對於降解四環素中扮演著重要角色,相較之下,溶解性有機質之影響則較不顯著。

    Tetracycline is a widely used polyketide broad-spectrum antibiotic on human and livestock to prevent diseases and added in animal feed to promote animals’ growth rate. Due to its wide antibacterial spectrum and low cost, the large consumption of tetracycline increases its release into the environment. Many literatures have reported that long-term and low-dose tetracycline exposure may cause biological resistance and result in adverse effect to the ecosystem. Previous study has indicated that tetracycline could be oxidized under aerobic condition when mediated by Mn(II) or Cu(II). Natural organic matters (NOM) are ubiquitous substances with complicated chemical structures in the environment. They possess various functional groups which can coordinate or chelate with metal ions. Therefore, it was suspected that the presence of organic matters may influence the degradation of tetracycline by metal ions. This study selected three model organic compounds (pyromellitic acid, alginic acid and Aldrich humic acid), standard organic matters from International Humic Substance Society (IHSS), and local organic matters collected from surface water and a pig farm to illustrate their impacts on tetracycline oxidation mediated by Mn(II) and Cu(II).
    The results show that organic matters slightly inhibited the degradation of tetracycline because organic matters can chelate with metal ions and reduce the tetracycline-metal complex formation. Organic matters with larger molecular size, higher hydrophobicity and concentration caused stronger inhibition to the reactions (suppression from high to low: humic acid > alginic acid > pyromellitic acid). The presence of competitive ions (e.g. Ca(II) and Mg(II)) significantly decreased the reaction rate in the Mn(II) system, while they caused minor effect on the Cu(II) system, which is because the coordinated site of Cu(II) on tetracycline is different from that of Mn(II), Ca(II) and Mg(II). The pH value of reactions in the Cu(II) system conducted in local water samples increased due to the alkalinity and subsequently promoted the transformation of tetracycline. Temperature was also found as a factor which significantly enhanced the reactivity (40℃ > 25℃ > 15℃). To sum up, the experimental results suggested that organic matters could actually suppress tetracycline degradation by Mn(II) and Cu(II) but in a minor way. Other environmental factors including pH, competitive ions and temperature, played more important roles in the reactions.

    摘要 I Abstract III 誌謝 V Contents VI Tables IX Figures X Chapter 1 Introduction 1 Chapter 2 Literature review 3 2.1 Antibiotics 3 2.2 Tetracyclines (TCs) 5 2.3 Effect of metal ions on the environmental fate of tetracycline 8 2.4 Effect of natural organic matter on the environmental fate of tetracycline 10 2.5 Dissolved organic matters 12 2.5.1 Model organic matters 12 2.5.2 IHSS organic matters 14 2.5.3 Organic matters collected from the environment 15 2.6 Characterization method for organic matter 16 2.6.1 Total organic carbon (TOC) analyzer 16 2.6.2 Fluorescence excitation/emission matrix (FEEM) 17 2.6.3 High performance size exclusion chromatography (HPSEC) 18 2.6.4 SUVA value 19 Chapter 3 Materials and Methods 20 3.1 Chemicals 20 3.2 Analytical methods and instruments 21 3.2.1 Quantification of tetracycline 21 3.2.2 Quantification of dissolved organic matter 22 3.2.3 Qualitative analysis of dissolved organic matter 22 (A) Fluorescence excitation/emission matrix (FEEM) 23 (B) High performance size exclusion chromatography (HPSEC) 23 (C) SUVA value 24 3.2.4 Analysis of metal ions 25 3.3 Experimental setup 26 3.3.1 Kinetic experiment 26 Chapter 4 Results and Discussion 27 4.1 Organic matter characterization 27 4.1.1 FEEM analytical results 27 4.1.2 HPSEC results 32 4.1.3 SUVA values 34 4.2 Reaction kinetics in the Mn(II) and Cu(II) system 35 4.2.1 Effect of dissolved organic matters in the Mn(II) system 37 (A) Model organic matters 37 (B) IHSS organic matters 39 (C) Organic matters collected from the environment 41 (D) Effect of dissolved organic matter concentration 43 4.2.2 Effect of dissolved organic matters in the Cu(II) system 44 (A) Model organic matters 44 (B) IHSS organic matters 47 (C) Environmental organic matters 49 (D) Effect of dissolved organic matter concentration 54 4.3 Thermal effect 55 Chapter 5 Conclusion and Suggestion 57 5.1 Conclusion 57 5.2 Suggestion 58 References 59

    Yalkowsky, S.H., Dannenfelser, R.M. "Aquasol database of aqueous solubility." College of Pharmacy, University of Arizona, Tucson, AZ. (1992).
    Kortum, G., Vogel, W., Andrussow, K. "Dissociation constants of organic acids and bases." CRC hand book of chemistry and physics. (1961).
    Sarmah, A.K., Meyer, M.T., Boxall, A.B. "A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment." Chemosphere, 65(5), 725-759. (2006).
    Oka, H., Ito, Y., Matsumoto, H. "Chromatographic analysis of tetracycline antibiotics in foods." Journal of Chromatography A, 882(1-2), 109-133. (2000).
    McMurry, L., Petrucci, R.E., Levy, S.B. "Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli." Proceedings of the national academy of sciences, 77(7), 3974-3977. (1980).
    Kümmerer, K. "Resistance in the environment." Journal of Antimicrobial Chemotherapy, 54(2), 311-320. (2004).
    Marcial, B.L., Costa, L.A.S., De Almeida, W.B., Anconi, C.P., Dos Santos, H.F. "Interaction of chemically modified tetracyclines with catalytic Zn (II) ion in matrix metalloproteinase: evidence for metal coordination sites." Theoretical Chemistry Accounts, 128(3), 377-388. (2011).
    Chen, W.-R., Huang, C.-H. "Transformation of Tetracyclines Mediated by Mn(II) and Cu(II) Ions in the Presence of Oxygen." Environmental Science & Technology, 43(2), 401-407. (2009).
    Wang, H., Yao, H., Sun, P., Li, D., Huang, C.-H. "Transformation of tetracycline antibiotics and Fe (II) and Fe (III) species induced by their complexation." Environmental Science & Technology, 50(1), 145-153. (2015).
    Reuter, J., Perdue, E. "Importance of heavy metal-organic matter interactions in natural waters." Geochimica et Cosmochimica Acta, 41(2), 325-334. (1977).
    Ravichandran, M. "Interactions between mercury and dissolved organic matter––a review." Chemosphere, 55(3), 319-331. (2004).
    Gu, C., Karthikeyan, K.G., Sibley, S.D., Pedersen, J.A. "Complexation of the antibiotic tetracycline with humic acid." Chemosphere, 66(8), 1494-1501. (2007).
    Gómez-Pacheco, C.V., Sánchez-Polo, M., Rivera-Utrilla, J., López-Peñalver, J.J. "Tetracycline degradation in aqueous phase by ultraviolet radiation." Chemical Engineering Journal, 187, 89-95. (2012).
    Larsson, D.J., de Pedro, C., Paxeus, N. "Effluent from drug manufactures contains extremely high levels of pharmaceuticals." Journal of hazardous materials, 148(3), 751-755. (2007).
    Sim, W.-J., Lee, J.-W., Lee, E.-S., Shin, S.-K., Hwang, S.-R., Oh, J.-E. "Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures." Chemosphere, 82(2), 179-186. (2011).
    Larsson, D.J. "Antibiotics in the environment." Upsala journal of medical sciences, 119(2), 108-112. (2014).
    Gao, P., Munir, M., Xagoraraki, I. "Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant." Science of The Total Environment, 421-422, 173-183. (2012).
    Chen, G., Zhao, L., Dong, Y.-h. "Oxidative degradation kinetics and products of chlortetracycline by manganese dioxide." Journal of Hazardous Materials, 193, 128-138. (2011).
    Kümmerer, K. "Antibiotics in the aquatic environment – A review – Part I." Chemosphere, 75(4), 417-434. (2009).
    Daghrir, R., Drogui, P. "Tetracycline antibiotics in the environment: a review." Environmental Chemistry Letters, 11(3), 209-227. (2013).
    Zhou, Q., Zhang, M.C., Shuang, C.D., Li, Z.Q., Li, A.M. "Preparation of a novel magnetic powder resin for the rapid removal of tetracycline in the aquatic environment." Chinese Chemical Letters, 23(6), 745-748. (2012).
    Jjemba, P.K. "Excretion and ecotoxicity of pharmaceutical and personal care products in the environment." Ecotoxicology and environmental safety, 63(1), 113-130. (2006).
    Lindsey, M.E., Meyer, M., Thurman, E. "Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry." Analytical chemistry, 73(19), 4640-4646. (2001).
    Krapac, I., Koike, S., Meyer, M., Snow, D., Chou, S., Mackie, R., Roy, W., Chee-Sandford, J. "Long-term monitoring of the occurrence of antibiotic residues and antibiotic resistance in groundwater near swine confinement facilities." Report of the CSREES Project, 35, 102-10774. (2001).
    Hamscher, G., Sczesny, S., Höper, H., Nau, H. "Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry." Analytical chemistry, 74(7), 1509-1518. (2002).
    Miao, X.-S., Bishay, F., Chen, M., Metcalfe, C.D. "Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada." Environmental science & technology, 38(13), 3533-3541. (2004).
    Deblonde, T., Cossu-Leguille, C., Hartemann, P. "Emerging pollutants in wastewater: A review of the literature." International Journal of Hygiene and Environmental Health, 214(6), 442-448. (2011).
    McCormick, J., Fox, S.M., Smith, L.L., Bitler, B.A., Reichenthal, J., Origoni, V.E., Muller, W.H., Winterbottom, R., Doerschuk, A.P. "Studies of the reversible epimerization occurring in the tetracycline family. The preparation, properties and proof of structure of some 4-epi-tetracyclines." Journal of the American Chemical Society, 79(11), 2849-2858. (1957).
    Garrett, E.R., Brown, M. "The action of tetracycline and chloramphenicol alone and in admixture on the growth of Escherichia coli." Journal of Pharmacy and Pharmacology, 15(S1). (1963).
    Siddappa, K., Mane, S.B., Manikprabhu, D. "Spectral characterization and 3D molecular modeling studies of metal complexes involving the O, N-donor environment of quinazoline-4 (3H)-one Schiff base and their biological studies." The Scientific World Journal, 2014. (2014).
    Zhao, Y., Geng, J., Wang, X., Gu, X., Gao, S. "Tetracycline adsorption on kaolinite: pH, metal cations and humic acid effects." Ecotoxicology, 20(5), 1141-1147. (2011).
    Chang, P.-H., Li, Z., Jiang, W.-T., Jean, J.-S. "Adsorption and intercalation of tetracycline by swelling clay minerals." Applied Clay Science, 46(1), 27-36. (2009).
    Kulshrestha, P., Giese, R.F., Aga, D.S. "Investigating the Molecular Interactions of Oxytetracycline in Clay and Organic Matter:  Insights on Factors Affecting Its Mobility in Soil." Environmental Science & Technology, 38(15), 4097-4105. (2004).
    Rose, A.L., Waite, T.D. "Kinetic model for Fe (II) oxidation in seawater in the absence and presence of natural organic matter." Environmental Science & Technology, 36(3), 433-444. (2002).
    Evanko, C.R., Dzombak, D.A. "Influence of structural features on sorption of NOM-analogue organic acids to goethite." Environmental science & technology, 32(19), 2846-2855. (1998).
    Gombotz, W.R., Wee, S. "Protein release from alginate matrices." Advanced drug delivery reviews, 31(3), 267-285. (1998).
    Fourest, E., Volesky, B. "Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans." Environmental Science & Technology, 30(1), 277-282. (1995).
    Matthews, B., Jones, A., Theodorou, N., Tudhope, A. "Excitation-emission-matrix fluorescence spectroscopy applied to humic acid bands in coral reefs." Marine Chemistry, 55(3-4), 317-332. (1996).
    Carstea, E.M., Baker, A., Bieroza, M., Reynolds, D. "Continuous fluorescence excitation–emission matrix monitoring of river organic matter." Water research, 44(18), 5356-5366. (2010).
    Chen, W., Westerhoff, P., Leenheer, J.A., Booksh, K. "Fluorescence Excitation−Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter." Environmental Science & Technology, 37(24), 5701-5710. (2003).
    Rausa, R., Mazzolari, a., Calemma, V. "Determination of molecular size distributions of humic acids by high-performance size-exclusion chromatography." Journal of Chromatography A, 541, 419-429. (1991).
    Striegel, A., Yau, W.W., Kirkland, J.J., Bly, D.D. "Modern size-exclusion liquid chromatography: practice of gel permeation and gel filtration chromatography." ed. John Wiley & Sons. (2009).
    Edzwald, J.K., Tobiason, J.E. "Enhanced Coagulation: US Requirements and a Broader View." Water Science and Technology, 40(9), 63-70. (1999).
    Morgan, J.J. "Kinetics of reaction between O2 and Mn(II) species in aqueous solutions." Geochimica et Cosmochimica Acta, 69(1), 35-48. (2005).
    Ohyama, T., Cowan, J. "Calorimetric studies of metal binding to tetracycline. Role of solvent structure in defining the selectivity of metal ion-drug interactions." Inorganic Chemistry, 34(11), 3083-3086. (1995).
    Nayak, D.C., Varadachari, C., Ghosh, K. "Influence of organic acidic functional groups of humic substances in complexation with clay minerals." Soil science, 149(5), 268-271. (1990).
    Clive, D. "Chemistry of tetracyclines." Quarterly Reviews, Chemical Society, 22(4), 435-456. (1968).
    Hosny, W., El-Medani, S., Shoukry, M. "Equilibrium studies of the binary and ternary complexes involving tetracycline and amino acid or DNA constituents." Talanta, 48(4), 913-921. (1999).

    無法下載圖示 校內:2020-06-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE