| 研究生: |
王祥宇 Wang, Shiang-Yu |
|---|---|
| 論文名稱: |
應用機器學習方法於氣候變遷下之都市熱島治理 Applying Machine Learning to Urban Heat Island Governance under Climate Change |
| 指導教授: |
林子平
Lin, Tzu-Ping |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2025 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 都市熱島治理 、網格化空間數據分析 、機器學習 、空氣溫度推估 、都市降溫策略 |
| 外文關鍵詞: | Urban Heat Island Governance, Gridded Spatial Data Analysis, Machine Learning, Air Temperature Projection, Urban Cooling Strategies |
| 相關次數: | 點閱:38 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臺灣位於炎熱潮濕的副熱帶氣候區,都市化發展、建築熱排放及人類活動導致都市熱島效應(Urban Heat Island, UHI),使都市氣溫顯著高於周邊郊區。本研究以臺中市以及雙北市為案例,利用高解析度地理氣候數據(High-resolution Atmosphere Modeling - Weather Research and Forecasting Model, HiRAM-WRF)探討UHI的成因。經由地理資訊系統(Geospatial Information Systems, GIS)進行網格化空間數據分析,並計算生理等效溫度(Physiological Equivalent Temperature, PET)指數以識別熱區,研究發現,環境因子對都市氣溫具有複雜且非線性的影響,因此分析具有挑戰性。
本研究於臺中市區域採用決策樹演算法辨識不同開發程度區域的關鍵環境因子,並進行權重分析以選擇有效降溫策略。最後,利用倒傳遞神經網路(Back Propagation Neural Network, BPNN)模型模擬不同開發程度下的降溫政策並驗證其效能。另外於雙北市區域中,利用極端梯度提升演算法(eXtreme Gradient Boosting, XGBoost),以HiRAM-WRF模型提供5公里乘以5公里之網格解析度的廣域氣溫模擬,掌握宏觀氣候變化與都市熱島效應的空間分布,加以結合中央氣象站數據具備高時空解析度,細緻反映都市中不同區域的實際溫度變化,此跨尺度溫度預測模型,於人為開發強度高的地區更具代表性,也更能準確預估該區域的建築能耗預估情況。
此外,機器學習方法在都市熱島研究中的應用,已被許多研究證實能有效辨識出影響熱環境的致熱因子,並能量化其在不同季節、不同空間尺度下的影響力。本研究於臺中、雙北等大都市的實證研究中,不同的機器學習模型皆顯示,每增加10%的水綠空間,能顯著降低市區空氣溫度約0.22至0.31℃,而建築密度與不透水面積每增加10%,則會加劇熱島效應,空氣溫度將上升約0.27至0.37℃,另外,經由結合氣象觀測數據(Climate Observation Data Inquire System, CODiS)數據進行校正,本研究大幅提升了溫度預測的準確性,XGBoost模型預測誤差率約在10%以內,R²的範圍落於0.73至0.77之間,平均RMSE值則為1.2-1.5°C,MAE值為1.0-1.2°C,顯著優於傳統線性分析方法。最後,這些成果對於高密度都市區的熱島治理與政策制定,提供了科學依據和決策支持。未來可結合更都市形態資料與長期氣候監測數據,進一步優化模型,提升都市熱環境的降溫策略與科學性規劃,為臺灣及全球類似氣候區都市的永續發展貢獻重要參考。
Taiwan’s hot, humid subtropical climate, combined with urbanization, building heat emissions, and human activities, has intensified the Urban Heat Island (UHI) effect, causing urban temperatures to rise significantly above those of surrounding suburbs. This study examines UHI in Taichung and Taipei using high-resolution atmospheric modeling (HiRAM-WRF) and grid-based spatial analysis via Geospatial Information Systems (GIS), alongside the Physiological Equivalent Temperature (PET) index to identify heat-prone zones. Results show that environmental factors have complex, nonlinear impacts on urban temperatures. For Taichung, decision tree algorithms identified key environmental variables in areas with different development intensities, and weight analysis selected effective cooling strategies. A Back Propagation Neural Network (BPNN) simulated and validated cooling policy outcomes under various scenarios. In Taipei, the eXtreme Gradient Boosting (XGBoost) algorithm, combined with HiRAM-WRF, provided temperature simulations at a 5 km grid, capturing macro-level UHI distribution. Integration with high-resolution central weather station data allowed detailed mapping of temperature variations across districts. This cross-scale projection model is especially valuable for highly developed areas, enabling more accurate building energy consumption estimates. Machine learning methods proved effective in identifying heat-contributing factors and quantifying their impacts across seasons and spatial scales. Empirical results indicate that a 10% increase in blue-green space can lower urban air temperatures by 0.22–0.31°C, while a 10% increase in building density or impervious surfaces raises temperatures by 0.27–0.37°C. Calibration with Climate Observation Data Inquire System (CODiS) data significantly improved projection accuracy, with XGBoost error rates under 10% and R² ranging from 0.73 to 0.77, the average RMSE is 1.2–1.5°C and MAE is 1.0–1.2°C, outperforming traditional linear methods. These findings provide scientific support for urban thermal management and policy-making. Future integration of more urban morphology and long-term climate data will further optimize models and support sustainable urban development in Taiwan and similar climates.
1. AC08013621, A. (Ed.). (1998). Ergonomics of the thermal environment-Instruments for measuring physical quantities. ISO.
2. Adeniran, I. A., Nazeer, M., Wong, M. S., & Chan, P. W. (2024). An improved machine learning-based model for prediction of diurnal and spatially continuous near surface air temperature. Scientific Reports, 14(1), 27342.
3. Aghamolaei, R., He, B.J., et al. (2023). Outdoor thermal comfort indices: A systematic review and future directions. Sustainable Cities and Society, 95, 104678.
4. Alliance, C. C. F. L. (2023). Summary for Decision-makers-State of Finance for Nature: The Big Nature Turnaround–Repurposing $7 trillion to combat nature loss. State of Finance for Nature 2022-Time to Act.
5. Alonso, L., & Renard, F. (2020). A new approach for understanding urban microclimate by integrating complementary predictors at different scales in regression and machine learning models. Remote Sensing, 12(15), 2434.
6. Anees, S. A., Zhang, X., Shakeel, M., Al-Kahtani, M. A., Khan, K. A., Akram, M., & Ghramh, H. A. (2022). Estimation of fractional vegetation cover dynamics based on satellite remote sensing in pakistan: a comprehensive study on the FVC and its drivers. Journal of King Saud University-Science, 34(3), 101848.
7. Anika, O. C., Nnabuife, S. G., Bello, A., Okoroafor, E. R., Kuang, B., & Villa, R. (2022). Prospects of low and zero-carbon renewable fuels in 1.5-degree net zero emission actualisation by 2050: A critical review. Carbon Capture Science & Technology, 5, 100072.
8. Aqilah, N., Zaki, S. A., Hagishima, A., Rijal, H. B., & Yakub, F. (2021). Analysis on electricity use and indoor thermal environment for typical air-conditioning residential buildings in Malaysia. Urban Climate, 37, 100830.
9. Berry, P. M., Brown, S., Chen, M., Kontogianni, A., Rowlands, O., Simpson, G., & Skourtos, M. (2015). Cross-sectoral interactions of adaptation and mitigation measures. Climatic Change, 128, 381-393.
10. Blazejczyk, K., Epstein, Y., Jendritzky, G., Staiger, H., & Tinz, B. (2012). Comparison of UTCI to selected thermal indices. International journal of biometeorology, 56, 515-535.
11. Blunn, L. P., Ames, F., Croad, H. L., Gainford, A., Higgs, I., Lipson, M., & Lo, C. H. B. (2024). Machine learning bias correction and downscaling of urban heatwave temperature predictions from kilometre to hectometre scale. Meteorological Applications, 31(3), e2200.
12. Bommer, P. L., Kretschmer, M., Bareeva, D., Aksoy, K., & Höhne, M. (2022, May). A comparison of explainable AI solutions to a climate change prediction task. In EGU General Assembly Conference Abstracts (pp. EGU22-8130).
13. Büyükalaca, O., Bulut, H., & Yılmaz, T. (2001). Analysis of variable-base heating and cooling degree-days for Turkey. Applied Energy, 69(4), 269-283.
14. Chen, G., Hua, J., Shi, Y., & Ren, C. (2023). Constructing air temperature and relative humidity-based hourly thermal comfort dataset for a high-density city using machine learning. Urban Climate, 47, 101400.
15. Cifuentes, J., Marulanda, G., Bello, A., & Reneses, J. (2020). Air temperature forecasting using machine learning techniques: a review. Energies, 13(16), 4215.
16. Chaston, T. B., Broome, R. A., Cooper, N., Duck, G., Geromboux, C., Guo, Y., ... & Hanigan, I. C. (2022). Mortality burden of heatwaves in Sydney, Australia is exacerbated by the urban heat island and climate change: can tree cover help mitigate the health impacts?. Atmosphere, 13(5), 714.
17. Chen, K., Newman, A. J., Huang, M., Coon, C., Darrow, L. A., Strickland, M. J., & Holmes, H. A. (2022). Estimating heat‐related exposures and urban heat Island impacts: A case study for the 2012 Chicago Heatwave. GeoHealth, 6(1), e2021GH000535.
18. Chen, L., Ng, E., et al. (2020). mPET: A modified physiological equivalent temperature index for improved outdoor thermal comfort assessment in humid climates. Building and Environment, 179, 106940.
19. Chen, Z., Sivaparthipan, C. B., & Muthu, B. (2022). IoT based smart and intelligent smart city energy optimization. Sustainable Energy Technologies and Assessments, 49, 101724.
20. Chen, Z., Sivaparthipan, C. B., & Muthu, B. (2022). IoT based smart and intelligent smart city energy optimization. Sustainable Energy Technologies and Assessments, 49, 101724.
21. Cheval, S., Amihăesei, V. A., Chitu, Z., Dumitrescu, A., Falcescu, V., Irașoc, A., ... & Tudose, N. C. (2024). A systematic review of urban heat island and heat waves research (1991–2022). Climate Risk Management, 44, 100603.
22. Chronopoulos, K. I., Tsiros, I. X., Dimopoulos, I. F., & Alvertos, N. (2008). An application of artificial neural network models to estimate air temperature data in areas with sparse network of meteorological stations. Journal of Environmental Science and Health Part A, 43(14), 1752-1757.
23. Cohen, P., Potchter, O., Matzarakis, A., 2013. Human thermal perception of Coastal Mediterranean outdoor urban environments. Applied Geography, 37, 1–10.
24. Dai, Z., Guldmann, J. M., & Hu, Y. (2018). Spatial regression models of park and land-use impacts on the urban heat island in central Beijing. Science of the total environment, 626, 1136-1147.
25. Davtalab, J., Deyhimi, S. P., Dessi, V., Hafezi, M. R., & Adib, M. (2020). The impact of green space structure on physiological equivalent temperature index in open space. Urban Climate, 31, 100574.
26. De Dear, R. J., & Brager, G. S. (2002). Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55. Energy and buildings, 34(6), 549-561.
27. Demirović, E., Lukina, A., Hebrard, E., Chan, J., Bailey, J., Leckie, C., ... & Stuckey, P. J. (2022). Murtree: Optimal decision trees via dynamic programming and search. Journal of Machine Learning Research, 23(26), 1-47.
28. Dodoo, A., Gustavsson, L., & Bonakdar, F. (2014). Effects of future climate change scenarios on overheating risk and primary energy use for Swedish residential buildings. Energy Procedia, 61, 1179-1182.
29. Duchêne, F., Hamdi, R., Van Schaeybroeck, B., Caluwaerts, S., De Troch, R., De Cruz, L., & Termonia, P. (2022). Downscaling ensemble climate projections to urban scale: Brussels's future climate at 1.5° C, 2° C, and 3° C global warming. Urban Climate, 46, 101319.
30. Frayssinet, L., Merlier, L., Kuznik, F., Hubert, J. L., Milliez, M., & Roux, J. J. (2018). Modeling the heating and cooling energy demand of urban buildings at city scale. Renewable and Sustainable Energy Reviews, 81, 2318-2327.
31. Fu, Q., Wang, R., & Yang, H. (2024). Dynamic attenuation model of heat stress for walkability assessment in 15-minute cities. DOAJ / Cities, 29 pp.
32. Guha, S., Govil, H., Dey, A., & Gill, N. (2018). Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy. European Journal of Remote Sensing, 51(1), 667-678.
33. Gulyás, Á., & Matzarakis, A. (2009). Seasonal and spatial distribution of physiologically equivalent temperature (PET) index in Hungary. Quarterly Journal of the Hungarian Meteorological Service, 113(3), 221-231.
34. Gunawardena, K. R., Wells, M. J., & Kershaw, T. (2017). Utilising green and bluespace to mitigate urban heat island intensity. Science of the total environment, 584, 1040-1055.
35. Haashemi, S., Weng, Q., Darvishi, A., & Alavipanah, S. K. (2016). Seasonal variations of the surface urban heat island in a semi-arid city. Remote sensing, 8(4), 352.
36. Hayes, A. T., Jandaghian, Z., Lacasse, M. A., Gaur, A., Lu, H., Laouadi, A., ... & Wang, L. (2022). Nature-based solutions (nbss) to mitigate urban heat island (UHI) effects in Canadian cities. Buildings, 12(7), 925.
37. He, J., Hoyano, A., & Asawa, T. (2009). A numerical simulation tool for predicting the impact of outdoor thermal environment on building energy performance. Applied energy, 86(9), 1596-1605.
38. He, J., Shi, Y., Xu, L., Lu, Z., Feng, M., Tang, J., & Guo, X. (2024). Exploring the scale effect of urban thermal environment through XGBoost model. Sustainable Cities and Society, 114, 105763.
39. He, J., Wang, M., Li, X., Chen, H., & Yin, C. (2024). Evaluating the impact and mechanisms of newly constructed parks on urban heat island mitigation: A before-and-after construction contrast. SSRN Working Paper, 26 pp.
40. Heaviside, C., Macintyre, H., & Vardoulakis, S. (2017). The urban heat island: implications for health in a changing environment. Current environmental health reports, 4, 296-305.
41. Höppe, P. (1999). The PET–a universal index for the biometeorological assessment of the thermal environment. International journal of Biometeorology, 43, 71-75.
42. Hou, H., Su, H., Yao, C., & Wang, Z. H. (2023). Spatiotemporal patterns of the impact of surface roughness and morphology on urban heat island. Sustainable Cities and Society, 92, 104513.
43. Hsieh, C. M., Aramaki, T., & Hanaki, K. (2011). Managing heat rejected from air conditioning systems to save energy and improve the microclimates of residential buildings. Computers, Environment and Urban Systems, 35(5), 358-367.
44. https://tccip.ncdr.nat.gov.tw/tr_02.aspx?category_id=C5&faq_id=20211220112128
45. Huang, K. T., & Hwang, R. L. (2016). Future trends of residential building cooling energy and passive adaptation measures to counteract climate change: The case of Taiwan. Applied Energy, 184, 1230-1240.
46. Huang, K., Li, X., Liu, X., & Seto, K. C. (2019). Projecting global urban land expansion and heat island intensification through 2050. Environmental Research Letters, 14(11), 114037.
47. Huang, Q., Zhang, F., & Li, X. (2018). Machine learning in ultrasound computer‐aided diagnostic systems: a survey. BioMed research international, 2018(1), 5137904.
48. Huang, W. T. K., Masselot, P., Bou-Zeid, E., Fatichi, S., Paschalis, A., Sun, T., ... & Manoli, G. (2023). Economic valuation of temperature-related mortality attributed to urban heat islands in European cities. Nature communications, 14(1), 7438.
49. Hutengs, C., & Vohland, M. (2016). Downscaling land surface temperature in an alpine landscape using multi-sensor data. Remote Sensing of Environment, 181, 89-102.
50. Hwang, R. L., Weng, Y. T., & Huang, K. T. (2022). Considering transient UTCI and thermal discomfort footprint simultaneously to develop dynamic thermal comfort models for pedestrians in a hot-and-humid climate. Building and Environment, 222, 109410.
51. Hwang, R.-L., Huang, Y.-C., & Lin, T.-P. (2022). Influences of variable thermal exposures on walking thermal comfort in hot summer: Physio-psychological responses. Building and Environment, 239, 110346.
52. Ige-Elegbede, J., Powell, J., & Pilkington, P. (2024). A systematic review of the impacts of extreme heat on health and wellbeing in the United Kingdom. Cities & health, 8(3), 432-446.
53. International Energy Agency. (2018). The Future of Cooling: Opportunities for energy-efficient air conditioning. IEA, Paris, 92 pp.
54. Isaac, M., & Van Vuuren, D. P. (2009). Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy policy, 37(2), 507-521.
55. Iungman, T., Cirach, M., Marando, F., Barboza, E. P., Khomenko, S., Masselot, P., ... & Nieuwenhuijsen, M. (2023). Cooling cities through urban green infrastructure: a health impact assessment of European cities. The Lancet, 401(10376), 577-589.
56. Iungman, T., Khomenko, S., Barboza, E. P., Cirach, M., Gonçalves, K., Petrone, P., ... & Nieuwenhuijsen, M. (2024). The impact of urban configuration types on urban heat islands, air pollution, CO2 emissions, and mortality in Europe: a data science approach. The Lancet Planetary Health, 8(7), e489-e505.
57. Jalali, Z., Shamseldin, A. Y., & Ghaffarianhoseini, A. (2023). Impact assessment of climate change on energy performance and thermal load of residential buildings in New Zealand. Building and Environment, 243, 110627.
58. Jevrejeva, S., Jackson, L. P., Riva, R. E., Grinsted, A., & Moore, J. C. (2016). Coastal sea level rise with warming above 2 C. Proceedings of the National Academy of Sciences, 113(47), 13342-13347.
59. Ji, W., Zhu, Y., Du, H., Cao, B., Lian, Z., Geng, Y., Yang, C., 2022. Interpretation of standard effective temperature (SET) and explorations on its modification and development. Building and Environment, 210, 108714.
60. Jylhä, K., Jokisalo, J., Ruosteenoja, K., Pilli-Sihvola, K., Kalamees, T., Seitola, T., ... & Drebs, A. (2015). Energy demand for the heating and cooling of residential houses in Finland in a changing climate. Energy and Buildings, 99, 104-116.
61. Karmalkar, A. V., & Bradley, R. S. (2017). Consequences of global warming of 1.5 C and 2 C for regional temperature and precipitation changes in the contiguous United States. PloS one, 12(1), e0168697.
62. Kasiewicz, T., Xu, Z., & Bogacz, R. (2020). Can the brain do backpropagation?---exact implementation of backpropagation in predictive coding networks. Advances in neural information processing systems, 33, 22566-22579.
63. Klusowski, J. M., & Tian, P. M. (2024). Large scale prediction with decision trees. Journal of the American Statistical Association, 119(545), 525-537.
64. Kondo, J., & Yamazawa, H. (1986). Aerodynamic roughness over an inhomogeneous ground surface. Boundary-Layer Meteorology, 35, 331-348.
65. La Fleur, L., Rohdin, P., & Moshfegh, B. (2018). Energy use and perceived indoor environment in a Swedish multifamily building before and after major renovation. Sustainability, 10(3), 766.
66. Lau, T. K., Tsai, P. C., Ou, H. Y., & Lin, T. P. (2023). Efficient and cost-effective method for identifying urban ventilation corridors using a heuristic search algorithm. Sustainable Cities and Society, 105144.
67. Lee, J. S., & Han, A. T. (2024). Heat vulnerability and spatial equity of cooling center: Planning implications from the Korean case. Urban Climate, 55, 101869.
68. Lee, K., Baek, H. J., & Cho, C. (2014). The estimation of base temperature for heating and cooling degree-days for South Korea. Journal of applied meteorology and climatology, 53(2), 300-309.
69. Lettau, H. (1969). Note on aerodynamic roughness-parameter estimation on the basis of roughness-element description. Journal of Applied Meteorology (1962-1982), 8(5), 828-832.
70. Li, J., & Liu, N. (2020). The perception, optimization strategies and prospects of outdoor thermal comfort in China: A review. Building and Environment, 170, 106614.
71. Li, J., & Stouffs, R. (2024). Prediction of Potential Urban Hot Spots in Urban Environments Using Convolutional Neural Networks and Remote Sensing Techniques. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 10, 195-202.
72. Li, W., Ni, L., Li, Z. L., Duan, S. B., & Wu, H. (2019). Evaluation of machine learning algorithms in spatial downscaling of MODIS land surface temperature. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(7), 2299-2307.
73. Li, X. C., Zhao, L., Qin, Y., Oleson, K., & Zhang, Y. (2024). Elevated urban energy risks due to climate-driven biophysical feedbacks. Nature Climate Change, 14(10), 1056-1063.
74. Li, X., Zhou, Y., Asrar, G. R., Imhoff, M., & Li, X. (2017). The surface urban heat island response to urban expansion: A panel analysis for the conterminous United States. Science of the Total Environment, 605, 426-435.
75. Li, X., Zhou, Y., Yu, S., Jia, G., Li, H., & Li, W. (2019). Urban heat island impacts on building energy consumption: A review of approaches and findings. Energy, 174, 407-419.
76. Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J., & Hinton, G. (2020). Backpropagation and the brain. Nature Reviews Neuroscience, 21(6), 335-346.
77. Lin, T. P., & Matzarakis, A. (2008). Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. International journal of biometeorology, 52(4), 281-290.
78. Lin, T.P., 2009. Thermal perception, adaptation and attendance in a public square in hot and humid regions. Building and Environment, 44(10), 2017–2026.
79. Lin, C. Y., Chien, Y. Y., Su, C. J., Kueh, M. T., & Lung, S. C. (2017). Climate variability of heat wave and projection of warming scenario in Taiwan. Climatic Change, 145(3), 305-320.
80. Lin, Z. A., Chang, C., & Lin, T. P. (2024). Designers' guided site shading strategies: A simplified model for radiative cooling. Building and Environment, 262, 111824.
81. Lobaccaro, G., & Acero, J. A. (2015). Comparative analysis of green actions to improve outdoor thermal comfort inside typical urban street canyons. Urban Climate, 14, 251-267.
82. Lundgren, K., Kuklane, K., Gao, C., & Holmér, I. (2013). Effects of heat stress on working populations when facing climate change. Industrial Health, 51(1), 3-15.
83. McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International journal of remote sensing, 17(7), 1425-1432.
84. Makido, Y., Hellman, D., & Shandas, V. (2019). Nature-based designs to mitigate urban heat: The efficacy of green infrastructure treatments in Portland, Oregon. Atmosphere, 10(5), 282.
85. Masoudi, M., Tan, P. Y., & Liew, S. C. (2019). Multi-city comparison of the relationships between spatial pattern and cooling effect of urban green spaces in four major Asian cities. Ecological Indicators, 98, 200-213.
86. Matzarakis, A., & Mayer, H. (1992). Mapping of urban air paths for planning in Munich. Wiss. Ber. Inst. Meteor. Klimaforsch. Univ. Karlsruhe, 16, 13-22.
87. Matzarakis, A., Rutz, F., & Mayer, H. (2007). Modelling radiation fluxes in simple and complex environments—application of the RayMan model. International journal of biometeorology, 51, 323-334.
88. Matzarakis, A., Rutz, F., Mayer, H., 2006. Modelling the thermal bioclimate in urban areas with the RayMan Model. International Conference on Passive and Low Energy Architecture, 23, 449–453.
89. Memon, R. A., Leung, D. Y., & Liu, C. H. (2010). Effects of building aspect ratio and wind speed on air temperatures in urban-like street canyons. Building and Environment, 45(1), 176-188.
90. Mutani, G., Scalise, A., Sufa, X., & Grasso, S. (2024). Synergising Machine Learning and Remote Sensing for Urban Heat Island Dynamics: A Comprehensive Modelling Approach. Atmosphere, 15(12), 1435.
91. Mehdizadeh Khorrami, B., Soleimani, A., Pinnarelli, A., Brusco, G., & Vizza, P. (2024). Forecasting heating and cooling loads in residential buildings using machine learning: A comparative study of techniques and influential indicators. Asian Journal of Civil Engineering, 25(2), 1163-1177.
92. Nejat, P., Jomehzadeh, F., Taheri, M. M., Gohari, M., & Majid, M. Z. A. (2015). A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renewable and sustainable energy reviews, 43, 843-862.
93. Ng, E., Yuan, C., Chen, L., Ren, C., & Fung, J. C. (2011). Improving the wind environment in high-density cities by understanding urban morphology and surface roughness: A study in Hong Kong. Landscape and Urban planning, 101(1), 59-74.
94. Oktay, Z., Coskun, C., & Dincer, I. (2011). A new approach for predicting cooling degree-hours and energy requirements in buildings. Energy, 36(8), 4855-4863.
95. Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Ottlé, C., Bréon, F.-M., Nan, H., Zhou, L., & Myneni, R. B. (2012). Surface urban heat island across 419 global big cities. Environmental Science & Technology, 46(2), 696-703.
96. Pérez-Andreu, V., Aparicio-Fernández, C., Martínez-Ibernón, A., & Vivancos, J. L. (2018). Impact of climate change on heating and cooling energy demand in a residential building in a Mediterranean climate. Energy, 165, 63-74.
97. Pokhrel, R., Cai, H., & Ren, G. (2019). Modelling the fine-scale spatiotemporal pattern of urban heat island using land-use regression in a megacity. Building and Environment, 158, 39-50.
98. Price, J. C. (1979). Assessment of the urban heat island effect through the use of satellite data. Monthly Weather Review, 107(11), 1554-1557.
99. Qian, Y., Chakraborty, T. C., Li, J., Li, D., He, C., Sarangi, C., ... & Leung, L. R. (2022). Urbanization impact on regional climate and extreme weather: Current understanding, uncertainties, and future research directions. Advances in Atmospheric Sciences, 39(6), 819-860.
100. Rashid, N., Alam, J. M., Chowdhury, M. A., & Islam, S. L. U. (2022). Impact of landuse change and urbanization on UHI effect in Narayanganj city, Bangladesh: A remote sensing-based estimation. Environmental Challenges, 8, 100571.
101. Raskin, P. D. (2005). Global scenarios: background review for the Millennium Ecosystem Assessment. Ecosystems, 8(2), 133-142.
102. Rey, G., Fouillet, A., Bessemoulin, P., Frayssinet, P., Dufour, A., Jougla, E., & Hémon, D. (2009). Heat exposure and socio-economic vulnerability as synergistic factors in heat-wave-related mortality. European journal of epidemiology, 24, 495-502.
103. Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W., & Harlan, J. C. (1974). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation NASA/GSFC type III final report. Greenbelt, MD, USA.
104. Samikwa, E., Schärer, J., Braun, T., & Di Maio, A. (2023, October). Machine Learning-based Energy Optimisation in Smart City Internet of Things. In Proceedings of the Twenty-fourth International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing (pp. 364-369).
105. Santamouris, M., Cartalis, C., Synnefa, A., & Kolokotsa, D. (2015). On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—A review. Energy and buildings, 98, 119-124.
106. Satman, A., & Yalcinkaya, N. (1999). Heating and cooling degree-hours for Turkey. Energy, 24(10), 833-840.
107. Savitha, S., Vennila, V., Rajivkannan, A., Sathyaseelan, G., Sathyamoorthy, M., & Vasanth, V. (2025, May). Hybrid Model with SHAP-Enhanced Deep Neural Networks for Accurate Short-Term Rainfall. In International Conference on Sustainability Innovation in Computing and Engineering (ICSICE 2024) (pp. 710-719). Atlantis Press.
108. Sharifi, A. (2021). Co-benefits and synergies between urban climate change mitigation and adaptation measures: A literature review. Science of the total environment, 750, 141642.
109. Shehabi, A., Hubbard, A., Newkirk, A., Lei, N., Siddik, M. A. B., Holecek, B., ... & Sartor, D. (2024). 2024 United States Data Center Energy Usage Report.
110. Shen, C., Shen, A., Cui, Y., Chen, X., Liu, Y., Fan, Q., ... & Wu, J. (2022). Spatializing the roughness length of heterogeneous urban underlying surfaces to improve the WRF simulation-part 1: A review of morphological methods and model evaluation. Atmospheric Environment, 270, 118874.
111. Shen, P. (2017). Impacts of climate change on US building energy use by using downscaled hourly future weather data. Energy and buildings, 134, 61-70.
112. Shen, P., & Yang, B. (2020). Projecting Texas energy use for residential sector under future climate and urbanization scenarios: A bottom-up method based on twenty-year regional energy use data. Energy, 193, 116694.
113. Silva, S. J., Keller, C. A., & Hardin, J. (2018). Using an Interpretable Machine Learning Approach to Characterize Earth System Model. learning, 21(5), 3919-3948.
114. Simmonds, P. (2022, May). Using ASHRAE Standard 55 Adaptive Comfort Method for Practical Applications. In CLIMA 2022 conference.
115. Singh, P., Kikon, N., & Verma, P. (2017). Impact of land use change and urbanization on UHI in Lucknow city, Central India. A remote sensing based estimate. Sustainable cities and society, 32, 100-114.
116. Su, B., & Wang, S. (2020). An agent-based distributed real-time optimal control strategy for building HVAC systems for applications in the context of future IoT-based smart sensor networks. Applied Energy, 274, 115322.
117. Sun, F., Walton, D. B., & Hall, A. (2015). A hybrid dynamical–statistical downscaling technique. Part II: End-of-century warming projections predict a new climate state in the Los Angeles region. Journal of Climate, 28(12), 4618-4636.
118. Takane, Y., Kikegawa, Y., Hara, M., & Grimmond, C. S. B. (2019). Urban warming and future air-conditioning use in an Asian megacity: importance of positive feedback. npj Climate and Atmospheric Science, 2(1), 39.
119. Toparlar, Y., Blocken, B., Maiheu, B., & van Heijst, G. J. F. (2018). Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium. Applied Energy, 228, 852-872.
120. Tremeac, B., Bousquet, P., de Munck, C., Pigeon, G., Masson, V., Marchadier, C., ... & Meunier, F. (2012). Influence of air conditioning management on heat island in Paris air street temperatures. Applied energy, 95, 102-110.
121. Tian, L., Hao, T., He, X., Chan, I., Niu, J., Chan, P. W., ... & Huang, J. (2024). Examining the non-linear relationship between urban form and air temperature at street level: A case of Hong Kong. Building and Environment, 264, 111884.
122. Ukoba, K., Onisuru, O. R., Jen, T. C., Madyira, D. M., & Olatunji, K. O. (2025). Predictive modeling of climate change impacts using Artificial Intelligence: a review for equitable governance and sustainable outcome. Environmental Science and Pollution Research, 1-20.
123. Ullah, S., Li, J., Zheng, S., Sun, H., & Peng, J. (2024). Perceived heat stress differences between urban forms and vulnerability profiles: A Berlin case study. EGUsphere Discussion Paper, 40 pp.
124. Utkarsh, & Jain, P. K. (2024). Predicting bentonite swelling pressure: optimized XGBoost versus neural networks. Scientific Reports, 14(1), 17533.
125. Valor, E., Meneu, V., & Caselles, V. (2001). Daily air temperature and electricity load in Spain. Journal of Applied Meteorology, 40(8), 1413-1421.
126. Van Ruijven, B. J., De Cian, E., & Sue Wing, I. (2019). Amplification of future energy demand growth due to climate change. Nature communications, 10(1), 2762.
127. VDI, V. (1998). 3787, Part I: Environmental Meteorology, Methods for the Human Biometeorological Evaluation of Climate and Air Quality for the Urban and Regional Planning at Regional Level. Part I: Climate. Part I: Climate. Beuth, Berlin.
128. Wang, S. Y., Ou, H. Y., Chen, P. C., & Lin, T. P. (2024). Implementing policies to mitigate urban heat islands: Analyzing urban development factors with an innovative machine learning approach. Urban Climate, 55, 101868.
129. Wang, M., He, J., Li, X., Cai, H., & Chen, H. (2023). Impacts of urban heat island on heating and cooling loads in residential buildings in cities of different sizes in the Beijing–Tianjin–Hebei region, China. Atmosphere, 14(9), 1193.
130. Wang, X., Chen, D., & Ren, Z. (2010). Assessment of climate change impact on residential building heating and cooling energy requirement in Australia. Building and environment, 45(7), 1663-1682.
131. Wiens, M., Verone‐Boyle, A., Henscheid, N., Podichetty, J. T., & Burton, J. (2025). A tutorial and use case example of the eXtreme gradient boosting (XGBoost) artificial intelligence algorithm for drug development applications. Clinical and Translational Science, 18(3), e70172.
132. Wong, S. L., Wan, K. K., Li, D. H., & Lam, J. C. (2010). Impact of climate change on residential building envelope cooling loads in subtropical climates. Energy and buildings, 42(11), 2098-2103.
133. Yang, Y., Li, X., Wang, Y., et al. (2024). A global 1-km gridded UTCI dataset reveals spatiotemporal patterns and trends of outdoor thermal stress. Nature Communications, 15, 1234.
134. Ying, S., Wang, M., Zhang, W., Sun, H., & Li, C. (2023). City-scale ventilation analysis using 3D buildings with Guangzhou case. Urban Climate, 49, 101471.
135. Yoo, C., Im, J., Park, S., & Park, S. (2020). Downscaling of air temperature at the urban scale through machine learning approaches. Remote Sensing, 12(11), 1742.
136. Yuan, T. (2024). The Role of Green Infrastructure in Mitigating the Urban Heat Island Effect. Open Journal of Applied Sciences, 14(11), 3155-3164.
137. Zang, Y., Huang, G., Liu, W., Chen, L., Wu, D., Wang, C., & Li, J. (2023). Deepurbanmodeller (dum): a Process-Informed Neural Architecture for High-Precision Urban Surface Temperature Prediction. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, 71-76.
138. Zheng, Q., Yu, C., Cao, J., Xu, Y., Xing, Q., & Jin, Y. (2024, August). Advanced payment security system: xgboost, lightgbm and smote integrated. In 2024 IEEE International Conference on Metaverse Computing, Networking, and Applications (MetaCom) (pp. 336-342). IEEE.
139. Zhou, D., Zhao, S., Liu, S., Zhang, L., & Zhu, C. (2018). Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers. Remote Sensing of Environment, 210, 218-230.
140. Zou, Y., Deng, Y., Xia, D., Lou, S., Yang, X., Huang, Y., ... & Zhong, Z. (2023). Comprehensive analysis on the energy resilience performance of urban residential sector in hot-humid area of China under climate change. Sustainable Cities and Society, 88, 104233.
141. 中華民國內政部,建築物節約能源設計技術規範 https://glrs.moi.gov.tw/LawContentSource.aspx?id=GL001227
142. 王柳臻 (2022)。高解析氣候歷史重建資料於都市規劃及建築設計之應用。國立成功大學碩士論文,台南市。
143. 內政部建築研究所 (2024). 2024年版建築能效評估手冊 五南圖書出版公司 ISBN: 978-626-7344-98-9
144. 李岳蓉 (2024)。都市綠化之可及性評估及熱輻射降溫模式探討。國立成功大學碩士論文,台南市。
145. 林子安 (2024)。基地遮蔭策略下的簡易熱輻射降溫評估模式建構。國立成功大學碩士論文,台南市。
146. 林子平、洪致文、陳永明、李欣輯、鄭兆尊、王柳臻、施明甫、劉曉薇、陳昭安、陳怡伶、呂季霖、廖梓辰(2025)。《都市風場應用圖集》[林子平、洪致文 主編]。國家災害防救科技中心出版。
147. 林秉毅、鄭兆尊、陳永明、簡毓瑭 (2021年)。NCDR 109-T05 40年高解析度臺灣歷史氣候資料。https://tccip.ncdr.nat.gov.tw/km_publish_technical_report_one.aspx?tr_id=20210825174251
148. 洪國安 (2021)。都市高溫化下之空調排熱分析。國立成功大學博士論文,台南市。
149. 教育部全球資訊網 [Ministry of Education, Taiwan]. https://ws.moe.edu.tw/
150. 陳潔榆 (2023)。以高解析度氣候資訊預估建築能源利用。國立成功大學碩士論文,台南市。
151. 楊承道,林士堯(民國112年9月5日)。TReAD 日射量偏差修正資料生產履歷(1.0.1 版)。https://tccip.ncdr.nat.gov.tw/upload/data_profile/20230719170640.pdf
152. 臺北市政府都市計畫書, 擬定「開發基地體感降溫指標」細部計畫案, 113年
153. 鄭兆尊、姜欣妤、簡毓瑭、林秉毅(民國113年9月13日)。TCCIP3全球氣候推估與重分析觀測資料的動力降尺度。https://tccip.ncdr.nat.gov.tw/upload/activity_agenda/20220908162743.pdf
154. 鄭晶尹 (2024)。氣候變遷對都市能耗與人體熱舒適之衝擊與調適。國立成功大學博士論文,台南市。
155. 黎益肇 (2023)。推動建置都市風廊之地理資訊系統開發。內政部建築研究所業務委託研究報告。