簡易檢索 / 詳目顯示

研究生: 賴昭翰
Lai, Chao-Han
論文名稱: 重組人類凝血脢調節素壓制實驗性小鼠腹主動脈瘤
Recombinant Human Thrombomodulin Suppresses Experimental Abdominal Aortic Aneurysms in Mice
指導教授: 吳華林
Wu, Hua-Lin
楊友任
Yang, Yu-Jen
共同指導教授: 江美治
Jiang, Meei-Jyh
謝清河
Hsieh, Ching-Ho
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 70
中文關鍵詞: 腹主動脈瘤凝血脢調節素高遷移率族蛋白B1高糖化終產物接收器
外文關鍵詞: Abdominal aortic aneurysm (AAA), Thrombomodulin (TM), High-mobility group box 1 (HMGB1), Receptor for advanced glycation end product (RAGE)
相關次數: 點閱:161下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腹主動脈瘤的病理形成特徵為慢性發炎與胞外間質的蛋白分解。凝血脢調節素是一種穿膜糖蛋白,它具有抗發炎活性比方像是干擾細胞激素的訊號傳遞及阻絕促發炎的高遷移率族蛋白B1以防止它接合能夠延續發炎與組織破壞的高糖化終產物接收器。我們的目標是探討含有胞外所有功能區的重組凝血脢調節素是否能夠抑制動脈瘤發展的假設。
    對氯化鈣引起小鼠腹主動脈瘤模式做特性分析發現,高遷移率族蛋白B1與高糖化終產物接收器兩者大多由巨噬細胞所表現且於28天的主動脈瘤形成過程中的表現增加是持續的。在體外實驗中,重組凝血脢調節素與高遷移率族蛋白B1的反應防止高遷移率族蛋白B1與巨噬細胞結合,因此抑制了巨噬細胞中高遷移率族蛋白B1與高糖化終產物接收器的訊號。在活體實驗中,在誘發腹主動脈瘤時以重組凝血脢調節素作短期治療可壓制促發炎細胞激素、高遷移率族蛋白B1與高糖化終產物接收器的表現程度,減少巨噬細胞的數量,而且最終在沒有干擾血管鈣化程度的情況下減緩基質金屬蛋白脢的產生、胞外間質的破壞與主動脈瘤形成。同樣地,以重組凝血脢調節素作後治療也緩和血管發炎並延緩腹主動脈瘤變大。
    這些結果顯示了重組凝血脢調節素提供對抗腹主動脈瘤發展的保護作用。其作用機轉和減少促發炎間質、阻斷巨噬細胞的增援以及壓制與動脈瘤形成相關的巨噬細胞中高遷移率族蛋白B1與高糖化終產物接收器的訊號及其下游巨噬細胞的活化有關。

    The pathogenesis of abdominal aortic aneurysm (AAA) is characterized by chronic inflammation and proteolytic degradation of extracellular matrix (ECM). Thrombomodulin (TM), a transmembrane glycoprotein, exerts anti-inflammatory activities such as inhibition of cytokine production and sequestration of proinflammatory high-mobility group box 1 (HMGB1) to prevent it from engaging the receptor for advanced glycation end product (RAGE) that may sustain inflammation and tissue damage. We aimed to investigate the hypothesis that recombinant TM containing all the extracellular domains (rTMD123) might have therapeutic potential against aneurysm development.
    Characterization of the CaCl2-induced AAA model in mice revealed that HMGB1 and RAGE, both localized mainly to macrophages, were persistently upregulated during a 28-day period of AAA development. In vitro, rTMD123-HMGB1 interaction prevented HMGB1 binding to macrophages, thereby prohibiting activation of HMGB1-RAGE signaling in macrophages. In vivo, short-term treatment with rTMD123 upon AAA induction suppressed the levels of proinflammatory cytokines, HMGB1 and RAGE in the aortic tissue, reduced the infiltrating macrophage number, and finally attenuated matrix metalloproteinase production, ECM destruction and AAA formation without disturbing vascular calcification. Consistently, post-treatment with rTMD123 alleviated vascular inflammation and retarded AAA progression.
    These data suggest that rTMD123 confers protection against AAA development. The mechanism of action may be associated with reduction of proinflammatory mediators, blockade of macrophage recruitment, and suppression of HMGB1-RAGE signaling involved in aneurysm formation and downstream macrophage activation.

    目錄...P. 5 表、圖目錄...P. 7 中文摘要 (Chinese Abstract)...P. 1 英文摘要 (English Abstract)...P. 2 誌謝 (Acknowledgment)...P. 3 符號與縮寫 (Symbols and Abbreviations)...P. 9 1. Introduction...P. 11 1-1. Clinical facts about abdominal aortic aneurysm (AAA)...P. 11 1-2. Pharmacotherapies for AAA- an emerging and promising strategy...P. 11 1-3. Anti-inflammatory properties of thrombomodulin (TM)...P. 12 1-4. Application of recombinant TM in laboratory and clinical settings...P. 13 1-5. Our hypothesis...P. 14 2. Material and Methods...P. 15 2-1. Mouse AAA model...P. 15 2-2. Quantification for HMGB1 and RAGE in the aortic wall...P. 15 2-3. Expression and purification of rTMD123 protein...P. 16 2-4. Cell cultures...P. 16 2-5. Assays for rTMD123-HMGB1 interaction...P. 16 2-6. Quantification for p65 and IκB-α in the cell lysate...P. 17 2-7. Gelatin zymography...P. 18 2-8. Treatment and post-treatment with rTMD123 in AAA model...P. 18 Experiment 1: prevention of AAA formation... 18 Experiment 2: retardation of AAA progression...P. 18 2-9. Quantification for MMPs in the aortic wall...P. 19 2-10. Histological analysis...P. 19 2-11. Quantification for vascular calcification...P. 20 2-12. Statistical analysis...P. 20 3. Results...P. 21 3-1. Sustained high levels of HMGB1 and RAGE during AAA formation...P. 21 3-2. rTMD123-HMGB1 interaction prevents HMGB1 binding to macrophages and inactivates HMGB1-RAGE signaling in macrophages...P. 22 3-3. Short-term treatment with rTMD123 upon AAA induction ameliorates vascular inflammation and prevents AAA formation (Experiment 1)...P. 24 3-4. Post-treatment with rTMD123 suppresses AAA progression in the CaCl2-induced model (Experiment 2)...P. 26 4. Discussion...P. 28 4-1. Ligand-RAGE in AAA...P. 28 4-2. Possible mechanisms of rTMD123 in suppression of the development of AAA...P. 29 4-3. Post-treatment with rTMD123 in retardation of aneurysm progression...P. 31 4-4. Study limitations...P. 32 4-5. Conclusions...P. 32 參考文獻 (References)...P. 53 附錄 (Appendices)...P. 66 自述 (Author Biography)...P. 67

    1. Abeyama K, Stern DM, Ito Y, Kawahara K, Yoshimoto Y, Tanaka M, Uchimura T, Ida N, Yamazaki Y, Yamada S, Yamamoto Y, Yamamoto H, Iino S, Taniguchi N and Maruyama I. The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. J Clin Invest 115(5):1267-1274. (2005)
    2. Ang LS, Boivin WA, Williams SJ, Zhao H, Abraham T, Carmine-Simmen K, McManus BM, Bleackley RC and Granville DJ. Serpina3n attenuates granzyme B-mediated decorin cleavage and rupture in a murine model of aortic aneurysm. Cell Death Dis 2(e209. (2011)
    3. Basalyga DM, Simionescu DT, Xiong W, Baxter BT, Starcher BC and Vyavahare NR. Elastin degradation and calcification in an abdominal aorta injury model: role of matrix metalloproteinases. Circulation 110(22):3480-3487. (2004)
    4. Baxter BT, Terrin MC and Dalman RL. Medical management of small abdominal aortic aneurysms. Circulation 117(14):1883-1889. (2008)
    5. Bierhaus A and Nawroth PP. Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. Diabetologia 52(11):2251-2263. (2009)
    6. Brewster DC, Cronenwett JL, Hallett JW, Jr., Johnston KW, Krupski WC and Matsumura JS. Guidelines for the treatment of abdominal aortic aneurysms. Report of a subcommittee of the Joint Council of the American Association for Vascular Surgery and Society for Vascular Surgery. J Vasc Surg 37(5):1106-1117. (2003)
    7. Chiou AC, Chiu B and Pearce WH. Murine aortic aneurysm produced by periarterial application of calcium chloride. J Surg Res 99(2):371-376. (2001)
    8. Conway EM, Van de Wouwer M, Pollefeyt S, Jurk K, Van Aken H, De Vriese A, Weitz JI, Weiler H, Hellings PW, Schaeffer P, Herbert JM, Collen D and Theilmeier G. The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappaB and mitogen-activated protein kinase pathways. J Exp Med 196(5):565-577. (2002)
    9. Dai J, Michineau S, Franck G, Desgranges P, Becquemin JP, Gervais M and Allaire E. Long term stabilization of expanding aortic aneurysms by a short course of cyclosporine A through transforming growth factor-beta induction. PLoS One 6(12):e28903. (2011)
    10. Daugherty A and Cassis LA. Mouse models of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 24(3):429-434. (2004)
    11. Daugherty A, Manning MW and Cassis LA. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest 105(11):1605-1612. (2000)
    12. Ding BS, Hong N, Christofidou-Solomidou M, Gottstein C, Albelda SM, Cines DB, Fisher AB and Muzykantov VR. Anchoring fusion thrombomodulin to the endothelial lumen protects against injury-induced lung thrombosis and inflammation. Am J Respir Crit Care Med 180(3):247-256. (2009)
    13. Esmon C. Do-all receptor takes on coagulation, inflammation. Nat Med 11(5):475-477. (2005)
    14. Esmon CT, Esmon NL and Harris KW. Complex formation between thrombin and thrombomodulin inhibits both thrombin-catalyzed fibrin formation and factor V activation. J Biol Chem 257(14):7944-7947. (1982)
    15. Fornasa G, Clement M, Groyer E, Gaston AT, Khallou-Laschet J, Morvan M, Guedj K, Kaveri SV, Tedgui A, Michel JB, Nicoletti A and Caligiuri G. A CD31-derived peptide prevents angiotensin II-induced atherosclerosis progression and aneurysm formation. Cardiovasc Res 94(1):30-37. (2012)
    16. Fujita T. AGE/RAGE axis in the development of abdominal aortic aneurysm. Ann Surg 252(1):203-205. (2010)
    17. Gavrila D, Li WG, McCormick ML, Thomas M, Daugherty A, Cassis LA, Miller FJ, Jr., Oberley LW, Dellsperger KC and Weintraub NL. Vitamin E inhibits abdominal aortic aneurysm formation in angiotensin II-infused apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 25(8):1671-1677. (2005)
    18. Geudens N, Van de Wouwer M, Vanaudenaerde BM, Vos R, Van De Wauwer C, Verleden GM, Verbeken E, Lerut T, Van Raemdonck DE and Conway EM. The lectin-like domain of thrombomodulin protects against ischaemia-reperfusion lung injury. Eur Respir J 32(4):862-870. (2008)
    19. Golledge J, Cullen B, Moran C and Rush C. Efficacy of simvastatin in reducing aortic dilatation in mouse models of abdominal aortic aneurysm. Cardiovasc Drugs Ther 24(5-6):373-378. (2010)
    20. Golledge J, Cullen B, Rush C, Moran CS, Secomb E, Wood F, Daugherty A, Campbell JH and Norman PE. Peroxisome proliferator-activated receptor ligands reduce aortic dilatation in a mouse model of aortic aneurysm. Atherosclerosis 210(1):51-56. (2010)
    21. Golledge J, Muller J, Daugherty A and Norman P. Abdominal aortic aneurysm: pathogenesis and implications for management. Arterioscler Thromb Vasc Biol 26(12):2605-2613. (2006)
    22. Hashizume R, Yamawaki-Ogata A, Ueda Y, Wagner WR and Narita Y. Mesenchymal stem cells attenuate angiotensin II-induced aortic aneurysm growth in apolipoprotein E-deficient mice. J Vasc Surg 54(6):1743-1752. (2011)
    23. Hofmann Bowman M, Wilk J, Heydemann A, Kim G, Rehman J, Lodato JA, Raman J and McNally EM. S100A12 mediates aortic wall remodeling and aortic aneurysm. Circ Res 106(1):145-154. (2010)
    24. Huang HC, Shi GY, Jiang SJ, Shi CS, Wu CM, Yang HY and Wu HL. Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain. J Biol Chem 278(47):46750-46759. (2003)
    25. Inoue N, Muramatsu M, Jin D, Takai S, Hayashi T, Katayama H, Kitaura Y, Tamai H and Miyazaki M. Effects of chymase inhibitor on angiotensin II-induced abdominal aortic aneurysm development in apolipoprotein E-deficient mice. Atherosclerosis 204(2):359-364. (2009)
    26. Isenburg JC, Simionescu DT, Starcher BC and Vyavahare NR. Elastin stabilization for treatment of abdominal aortic aneurysms. Circulation 115(13):1729-1737. (2007)
    27. Ito T, Kawahara K, Okamoto K, Yamada S, Yasuda M, Imaizumi H, Nawa Y, Meng X, Shrestha B, Hashiguchi T and Maruyama I. Proteolytic cleavage of high mobility group box 1 protein by thrombin-thrombomodulin complexes. Arterioscler Thromb Vasc Biol 28(10):1825-1830. (2008)
    28. Ito T and Maruyama I. Thrombomodulin: protectorate God of the vasculature in thrombosis and inflammation. J Thromb Haemost 9 Suppl 1(168-173. (2011)
    29. Jones A, Deb R, Torsney E, Howe F, Dunkley M, Gnaneswaran Y, Gaze D, Nasr H, Loftus IM, Thompson MM and Cockerill GW. Rosiglitazone reduces the development and rupture of experimental aortic aneurysms. Circulation 119(24):3125-3132. (2009)
    30. Kaneko H, Anzai T, Morisawa M, Kohno T, Nagai T, Anzai A, Takahashi T, Shimoda M, Sasaki A, Maekawa Y, Yoshimura K, Aoki H, Tsubota K, Yoshikawa T, Okada Y, Ogawa S and Fukuda K. Resveratrol prevents the development of abdominal aortic aneurysm through attenuation of inflammation, oxidative stress, and neovascularization. Atherosclerosis 217(2):350-357. (2011)
    31. King VL, Trivedi DB, Gitlin JM and Loftin CD. Selective cyclooxygenase-2 inhibition with celecoxib decreases angiotensin II-induced abdominal aortic aneurysm formation in mice. Arterioscler Thromb Vasc Biol 26(5):1137-1143. (2006)
    32. Kohno T, Anzai T, Kaneko H, Sugano Y, Shimizu H, Shimoda M, Miyasho T, Okamoto M, Yokota H, Yamada S, Yoshikawa T, Okada Y, Yozu R, Ogawa S and Fukuda K. High-mobility group box 1 protein blockade suppresses development of abdominal aortic aneurysm. J Cardiol 59(3):299-306. (2012)
    33. Krishna SM, Seto SW, Moxon JV, Rush C, Walker PJ, Norman PE and Golledge J. Fenofibrate increases high-density lipoprotein and sphingosine 1 phosphate concentrations limiting abdominal aortic aneurysm progression in a mouse model. Am J Pathol 181(2):706-718. (2012)
    34. Kristo F, Hardy GJ, Anderson TJ, Sinha S, Ahluwalia N, Lin AY, Passeri J, Scherrer-Crosbie M and Gerszten RE. Pharmacological inhibition of BLT1 diminishes early abdominal aneurysm formation. Atherosclerosis 210(1):107-113. (2010)
    35. Leeper NJ, Tedesco MM, Kojima Y, Schultz GM, Kundu RK, Ashley EA, Tsao PS, Dalman RL and Quertermous T. Apelin prevents aortic aneurysm formation by inhibiting macrophage inflammation. Am J Physiol Heart Circ Physiol 296(5):H1329-1335. (2009)
    36. Li YH, Liu SL, Shi GY, Tseng GH, Liu PY and Wu HL. Thrombomodulin plays an important role in arterial remodeling and neointima formation in mouse carotid ligation model. Thromb Haemost 95(1):128-133. (2006)
    37. Longo GM, Xiong W, Greiner TC, Zhao Y, Fiotti N and Baxter BT. Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest 110(5):625-632. (2002)
    38. Maegdefessel L, Azuma J, Toh R, Deng A, Merk DR, Raiesdana A, Leeper NJ, Raaz U, Schoelmerich AM, McConnell MV, Dalman RL, Spin JM and Tsao PS. MicroRNA-21 blocks abdominal aortic aneurysm development and nicotine-augmented expansion. Sci Transl Med 4(122):122ra122. (2012)
    39. Manning MW, Cassi LA, Huang J, Szilvassy SJ and Daugherty A. Abdominal aortic aneurysms: fresh insights from a novel animal model of the disease. Vasc Med 7(1):45-54. (2002)
    40. Martin-McNulty B, Tham DM, da Cunha V, Ho JJ, Wilson DW, Rutledge JC, Deng GG, Vergona R, Sullivan ME and Wang YX. 17 Beta-estradiol attenuates development of angiotensin II-induced aortic abdominal aneurysm in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 23(9):1627-1632. (2003)
    41. Miyake T, Aoki M, Osako MK, Shimamura M, Nakagami H and Morishita R. Systemic administration of ribbon-type decoy oligodeoxynucleotide against nuclear factor kappaB and ets prevents abdominal aortic aneurysm in rat model. Mol Ther 19(1):181-187. (2011)
    42. Miyake T and Morishita R. Pharmacological treatment of abdominal aortic aneurysm. Cardiovasc Res 83(3):436-443. (2009)
    43. Morimoto K, Hasegawa T, Tanaka A, Wulan B, Yu J, Morimoto N, Okita Y and Okada K. Free-radical scavenger edaravone inhibits both formation and development of abdominal aortic aneurysm in rats. J Vasc Surg 55(6):1749-1758. (2012)
    44. Nagato M, Okamoto K, Abe Y, Higure A and Yamaguchi K. Recombinant human soluble thrombomodulin decreases the plasma high-mobility group box-1 protein levels, whereas improving the acute liver injury and survival rates in experimental endotoxemia. Crit Care Med 37(7):2181-2186. (2009)
    45. Newby AC. Metalloproteinase expression in monocytes and macrophages and its relationship to atherosclerotic plaque instability. Arterioscler Thromb Vasc Biol 28(12):2108-2114. (2008)
    46. Parodi FE, Mao D, Ennis TL, Bartoli MA and Thompson RW. Suppression of experimental abdominal aortic aneurysms in mice by treatment with pyrrolidine dithiocarbamate, an antioxidant inhibitor of nuclear factor-kappaB. J Vasc Surg 41(3):479-489. (2005)
    47. Parodi FE, Mao D, Ennis TL, Pagano MB and Thompson RW. Oral administration of diferuloylmethane (curcumin) suppresses proinflammatory cytokines and destructive connective tissue remodeling in experimental abdominal aortic aneurysms. Ann Vasc Surg 20(3):360-368. (2006)
    48. Pyo R, Lee JK, Shipley JM, Curci JA, Mao D, Ziporin SJ, Ennis TL, Shapiro SD, Senior RM and Thompson RW. Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J Clin Invest 105(11):1641-1649. (2000)
    49. Rauvala H and Rouhiainen A. Physiological and pathophysiological outcomes of the interactions of HMGB1 with cell surface receptors. Biochim Biophys Acta 1799(1-2):164-170. (2010)
    50. Schmidt AM, Yan SD, Yan SF and Stern DM. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest 108(7):949-955. (2001)
    51. Sharfuddin AA, Sandoval RM, Berg DT, McDougal GE, Campos SB, Phillips CL, Jones BE, Gupta A, Grinnell BW and Molitoris BA. Soluble thrombomodulin protects ischemic kidneys. J Am Soc Nephrol 20(3):524-534. (2009)
    52. Shi CS, Shi GY, Hsiao SM, Kao YC, Kuo KL, Ma CY, Kuo CH, Chang BI, Chang CF, Lin CH, Wong CH and Wu HL. Lectin-like domain of thrombomodulin binds to its specific ligand Lewis Y antigen and neutralizes lipopolysaccharide-induced inflammatory response. Blood 112(9):3661-3670. (2008)
    53. Shimizu K, Mitchell RN and Libby P. Inflammation and cellular immune responses in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 26(5):987-994. (2006)
    54. Sims GP, Rowe DC, Rietdijk ST, Herbst R and Coyle AJ. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 28(367-388. (2010)
    55. Steinmetz EF, Buckley C, Shames ML, Ennis TL, Vanvickle-Chavez SJ, Mao D, Goeddel LA, Hawkins CJ and Thompson RW. Treatment with simvastatin suppresses the development of experimental abdominal aortic aneurysms in normal and hypercholesterolemic mice. Ann Surg 241(1):92-101. (2005)
    56. Sun J, Sukhova GK, Yang M, Wolters PJ, MacFarlane LA, Libby P, Sun C, Zhang Y, Liu J, Ennis TL, Knispel R, Xiong W, Thompson RW, Baxter BT and Shi GP. Mast cells modulate the pathogenesis of elastase-induced abdominal aortic aneurysms in mice. J Clin Invest 117(11):3359-3368. (2007)
    57. Thompson MM and Bell PR. ABC of arterial and venous disease. Arterial aneurysms. Bmj 320(7243):1193-1196. (2000)
    58. van Beijnum JR, Buurman WA and Griffioen AW. Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis 11(1):91-99. (2008)
    59. Van de Wouwer M, Collen D and Conway EM. Thrombomodulin-protein C-EPCR system: integrated to regulate coagulation and inflammation. Arterioscler Thromb Vasc Biol 24(8):1374-1383. (2004)
    60. Van de Wouwer M and Conway EM. Novel functions of thrombomodulin in inflammation. Crit Care Med 32(5 Suppl):S254-261. (2004)
    61. Van de Wouwer M, Plaisance S, De Vriese A, Waelkens E, Collen D, Persson J, Daha MR and Conway EM. The lectin-like domain of thrombomodulin interferes with complement activation and protects against arthritis. J Thromb Haemost 4(8):1813-1824. (2006)
    62. Vinh A, Gaspari TA, Liu HB, Dousha LF, Widdop RE and Dear AE. A novel histone deacetylase inhibitor reduces abdominal aortic aneurysm formation in angiotensin II-infused apolipoprotein E-deficient mice. J Vasc Res 45(2):143-152. (2008)
    63. Walton LJ, Franklin IJ, Bayston T, Brown LC, Greenhalgh RM, Taylor GW and Powell JT. Inhibition of prostaglandin E2 synthesis in abdominal aortic aneurysms: implications for smooth muscle cell viability, inflammatory processes, and the expansion of abdominal aortic aneurysms. Circulation 100(1):48-54. (1999)
    64. Wang YX, Martin-McNulty B, da Cunha V, Vincelette J, Lu X, Feng Q, Halks-Miller M, Mahmoudi M, Schroeder M, Subramanyam B, Tseng JL, Deng GD, Schirm S, Johns A, Kauser K, Dole WP and Light DR. Fasudil, a Rho-kinase inhibitor, attenuates angiotensin II-induced abdominal aortic aneurysm in apolipoprotein E-deficient mice by inhibiting apoptosis and proteolysis. Circulation 111(17):2219-2226. (2005)
    65. Wei HJ, Li YH, Shi GY, Liu SL, Chang PC, Kuo CH and Wu HL. Thrombomodulin domains attenuate atherosclerosis by inhibiting thrombin-induced endothelial cell activation. Cardiovasc Res 92(2):317-327. (2011)
    66. Wu G, Chen T, Shahsafaei A, Hu W, Bronson RT, Shi GP, Halperin JA, Aktas H and Qin X. Complement regulator CD59 protects against angiotensin II-induced abdominal aortic aneurysms in mice. Circulation 121(11):1338-1346. (2010)
    67. Xiong W, MacTaggart J, Knispel R, Worth J, Persidsky Y and Baxter BT. Blocking TNF-alpha attenuates aneurysm formation in a murine model. J Immunol 183(4):2741-2746. (2009)
    68. Xiong W, Mactaggart J, Knispel R, Worth J, Zhu Z, Li Y, Sun Y, Baxter BT and Johanning J. Inhibition of reactive oxygen species attenuates aneurysm formation in a murine model. Atherosclerosis 202(1):128-134. (2009)
    69. Yamanouchi D, Morgan S, Kato K, Lengfeld J, Zhang F and Liu B. Effects of caspase inhibitor on angiotensin II-induced abdominal aortic aneurysm in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 30(4):702-707. (2010)
    70. Yan SF, Yan SD, Ramasamy R and Schmidt AM. Tempering the wrath of RAGE: an emerging therapeutic strategy against diabetic complications, neurodegeneration, and inflammation. Ann Med 41(6):408-422. (2009)
    71. Yang H and Tracey KJ. Targeting HMGB1 in inflammation. Biochim Biophys Acta 1799(1-2):149-156. (2010)
    72. Yang H, Wang H, Czura CJ and Tracey KJ. The cytokine activity of HMGB1. J Leukoc Biol 78(1):1-8. (2005)
    73. Yokoyama U, Ishiwata R, Jin MH, Kato Y, Suzuki O, Jin H, Ichikawa Y, Kumagaya S, Katayama Y, Fujita T, Okumura S, Sato M, Sugimoto Y, Aoki H, Suzuki S, Masuda M, Minamisawa S and Ishikawa Y. Inhibition of EP4 signaling attenuates aortic aneurysm formation. PLoS One 7(5):e36724. (2012)
    74. Yoshimura K, Aoki H, Ikeda Y, Fujii K, Akiyama N, Furutani A, Hoshii Y, Tanaka N, Ricci R, Ishihara T, Esato K, Hamano K and Matsuzaki M. Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase. Nat Med 11(12):1330-1338. (2005)
    75. Zhang F, Banker G, Liu X, Suwanabol PA, Lengfeld J, Yamanouchi D, Kent KC and Liu B. The novel function of advanced glycation end products in regulation of MMP-9 production. J Surg Res 171(2):871-876. (2011)
    76. Zhang F, Kent KC, Yamanouchi D, Zhang Y, Kato K, Tsai S, Nowygrod R, Schmidt AM and Liu B. Anti-receptor for advanced glycation end products therapies as novel treatment for abdominal aortic aneurysm. Ann Surg 250(3):416-423. (2009)
    77. Zhang LN, Vincelette J, Cheng Y, Mehra U, Chen D, Anandan SK, Gless R, Webb HK and Wang YX. Inhibition of soluble epoxide hydrolase attenuated atherosclerosis, abdominal aortic aneurysm formation, and dyslipidemia. Arterioscler Thromb Vasc Biol 29(9):1265-1270. (2009)
    78. Zhang Y, Naggar JC, Welzig CM, Beasley D, Moulton KS, Park HJ and Galper JB. Simvastatin inhibits angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E-knockout mice: possible role of ERK. Arterioscler Thromb Vasc Biol 29(11):1764-1771. (2009)

    下載圖示 校內:2017-11-06公開
    校外:2017-11-06公開
    QR CODE