| 研究生: |
葉桂伶 Yeh, Kuei-Ling |
|---|---|
| 論文名稱: |
以培養策略與光生物反應器設計提升本土微藻之油脂產量 Enhancing lipids production of indigenous microalgae by cultivation technology and photobioreactor design |
| 指導教授: |
張嘉修
Chang, Jo-Shu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 167 |
| 中文關鍵詞: | 小球藻 、藻油 、油脂產率 、固碳 、直立式管狀光反應器 、生質柴油 、光源 、培養條件 、培養基組成 、氮源缺乏 、光異營培養 、戶外系統 |
| 外文關鍵詞: | Chlorella sp., microalgal lipid, CO2 fixation, lipid productivity, vertical tubular photobioreactor, biodiesel, light source, cultivation condition, medium composition, nitrogen starvation, photoheterotrophic cultivation, outdoor system |
| 相關次數: | 點閱:119 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
文獻指出微藻可用來降低二氧化碳排放且在特定培養條件下有生產油脂的能力,因此被譽為第三代生質燃料之料源。本研究針對自南台灣篩選出之本土小球藻(Chlorella sp. ESP-31)進行其生產油脂並應用於合成生質柴油之潛力分析。由於光源的提供對微藻培養十分重要,因此,本研究首先探討不同人工光源與光強度對微藻生長的影響。結果顯示,新型日光燈管(TL5)適用於微藻之室內培養,而使用200 mg/L碳酸氫納為碳源培養時,以光照度9 W/m2 (50 umol/m2•s)時有較佳的藻體生產力約0.029 g/L/d。
接著,本研究探討Chlorella sp. ESP-31的最佳培養基與培養條件,乃利用三種培養基(Basal 、Modified Bristol’s和MBL培養基)與四種培養條件(光自營,異營,光異營,混營)進行Chlorella sp. ESP-31之培養。結果發現在光自營(二氧化碳)、光異營(葡萄糖)與混營(二氧化碳加葡萄糖)的條件下,使用氮源充足的培養基(Basal和Modified Bristol's培養基)可得到較好的藻體濃度(2-5 g/L),而使用氮源缺乏的培養基(MBL培養基)則可得到較高的油脂含量(20-53%),但其生長較緩慢。無論使用何種培養基,Chlorella sp. ESP-31在混營的情況下可獲得最高的油脂含量(40-53%)與油脂產量(67-144 mg/L/d)。分析此藻株所累積的油脂成分發現,超過60-68%的脂肪酸皆為飽和的棕梠酸和硬脂酸與單一不飽和的油酸,其成分相當適合進行轉酯化以合成生質柴油。
此外,本研究亦建立一套以二氧化碳為碳源並將其轉化為油脂之培養程序,並以氮源缺乏策略及光生物反應器設計以提高Chlorella sp. ESP-31在光自營下之油脂生產與二氧化碳固定之效率。結果顯示,使用降低起始氮源濃度的單一階段氮源缺乏策略(Basal培養基;起始氮源濃度為0.313 g/L KNO3)可有效的增進微藻油脂產量並得到78 mg/L/d的油脂生產力與55.9%的油脂含量。接著,使用高表面對體積比(S/V=109.3 m2/m3)的直立型管狀反應器更可進一步的提高油脂產率至132.4 mg/L/d。實驗中亦發現當氮源缺乏,而油脂含量上升時,其飽和的棕梠酸和硬脂酸與單一不飽和的油酸占總油脂之比例從26%上升至65%,且生產油脂的同時還可在十天內固定6.36克的二氧化碳,其二氧化碳固定效率可達430 mg/L/d。
本研究也探討在光異營下使用不同有機碳源(葡萄糖、果糖、蔗糖、甘油、醋酸鈉與醋酸)對Chlorella sp. ESP-31生長與油脂含量之影響。當未控制pH值時,使用葡萄糖培養Chlorella sp. ESP-31可得最高的藻體產量(3.5 g/L)和油脂含量(26%)。若將pH值控制在8.5時,使用果糖與醋酸鈉也可得到3.2-3.6 g/L的藻體產量與24-25%的油脂含量。此外,使用醋酸進料控制pH值的饋料批次(pH-stat)操作也被用來增進藻體生長與油脂產量,當使用醋酸控制pH在7.0-7.5之間可得到最高的藻體轉換效率(0.68 g/g CH3COOH)、油脂含量(50%)與油脂產率(78 mg/L/d)。然而,實驗結果顯示,該微藻之油脂成分(即脂肪酸成分分佈)並不隨碳源之不同而改變。
最後,本研究將實驗室等級的直立式管狀反應器規模放大至50公升光管反應器,並進行Chlorella sp. ESP-31之室外培養。在最佳光自營(二氧化碳)及光異營(醋酸)的條件下,可得到30-31 mg/L/d的油脂產率且油脂可累積至35-44%。為了增進戶外培養的藻體生長與油脂累積,本研究嘗試使用不同起始藻種接種量進行陪養,結果發現使用0.70 g/L的起始接種量可得到較高的油脂產率(47.6 mg/L/d),且利用兩階段油脂累積策略可舒緩夏天養藻所面臨嚴重的汙染問題,並提升油脂產率。
Microalgae have the ability of mitigating carbon dioxide emissions and producing oil simultaneously under specific growth conditions, thereby having the potential as the feedstock to produce the third-generation biofuels. Light supply is one of the most important factors affecting autotrophic growth of microalgae. Therefore, this study started with the investigation on the effects of the type and light intensity of artificial light sources on the cell growth of an indigenous microalga Chlorella sp. ESP-31 isolated from southern Taiwan. The results show that a new fluorescent lamps (TL5) was effective in indoor cultivation of microalgae. A higher overall productivity of 0.029 g/L/d was obtained when using TL5 lamps as the light source with a light intensity of 9 W/m2 (or 50 umol/m2•s) using 200 mg/L NaHCO3 as the carbon source.
To determine suitable medium and cultivation conditions for the growth of Chlorella sp. ESP-31, different media (Basal, Modified Bristol’s and MBL medium) and cultivation conditions, including phototrophic growth (NaHCO3 or CO2, with light), heterotrophic growth (glucose, without light), photoheterotrophic growth (glucose, with light) and mixotrophic growth (glucose and CO2, with light) were applied. Chlorella sp. ESP-31 preferred to grow under phototrophic (CO2), photoheterotrophic and mixotrophic conditions on nitrogen-rich medium (i.e., Basal medium and Modified Bristol's medium), reaching a biomass concentration of 2-5 g/L. The growth on nitrogen-limiting MBL medium resulted in higher lipid accumulation (20-53%) of macroalgal biomass at the expense of a lower growth rate. Higher lipid content (40-53%) and lipid productivity (67-144 mg/L/d) were obtained under mixotrophic cultivation regardless of the culture medium used. The fatty acid composition of the microalgal lipid comprises over 60-68% of saturated fatty acids (i..e., palmitic acid (C16:0), stearic acid (C18:0)) and monounsaturated acids (i.e., oleic acid (C18:1)). This lipid composition is appropriate for biodiesel production.
To develop the cultivation technology able to achieve both CO2 mitigation and biofuel production from the microalgal strain, the nitrogen starvation strategies and photobioreactor design were applied to examine their effects on the performance of lipid production and of CO2 fixation of Chlorella sp. ESP-31 under phototrophic condition. Comparison of single-stage and two-stage nitrogen starvation strategies shows that using single-stage cultivation on Basal medium with lower initial nitrogen source concentration (i.e., 0.313 g/L KNO3) was the most effective approach to enhance microalgal lipid production, attaining a lipid productivity of 78 mg/L/d and a lipid content of 55.9%. The lipid productivity of Chlorella sp. ESP-31 was further upgraded to 132.4 mg/L/d when it was grown in a vertical tubular PBR with a high surface to volume ratio of 109.3 m2/m3. The proportion of saturated (i.e., palmitic acid (C16:0) and stearic acid (C18:0)) and monounsaturated (i.e., oleic acid (C18:1)) fatty acids increased from 26% to 65% of the total microalgal lipid during nitrogen starvation. The high lipid productivity was also accompanied by fixation of 6.36 g of CO2 during the 10-day phototrophic growth with a CO2 fixation rate of 430 mg/L/d.
The growth and lipid production of Chlorella sp. ESP-31 were also investigated under photoheterotrophic cultivation using different carbon sources (namely, glucose, fructose, sucrose, glycerol, sodium acetate and acetic acid). In the absence of pH control, growing Chlorella sp. ESP-31 on glucose obtained the highest biomass concentration (3.5 g/L) and lipid content (26%). By controlling pH at 8.5, the growth on fructose and sodium acetate was improved, obtaining a biomass concentration of 3.2-3.6 g/L and a lipid content of 24-25%. Moreover, an economical fed-batch operation with pH-stat feeding of acetic acid was employed to enhance biomass and lipid production. When the pH-stat culture was conducted at pH 7.0-7.5 with acetic acid feeding, the best photoheterotrophic growth performance was obtained, resulting in the highest biomass yield, lipid content, and lipid productivity of 0.68 g/g CH3COOH, 50%, and 78 mg/L/d, respectively. The fatty acid profile of the microalgal lipid did not change significantly while using different carbon sources.
The scale of the indoor vertical tubular-type PBR was elevated to 50 liter PBR for outdoor cultivation of Chlorella sp. ESP-31. Under phototrophic (CO2) and photoheterotrophic (acetic acid) conditions, the lipid productivities and lipid contents of 30-31 mg/L/d and 35-44%, respectively, were obtained. The effect of inoculum sizes on the performance of biomass and lipid production under phototrophic cultivation was also investigated. The lipid productivity of Chlorella sp. ESP-31 was further improved to 47.6 mg/L/d when a higher inoculum size of 0.70 g/L was used. Finally, to avoid severe contamnination problem during outdoor microalgae cultivation in the summer time, a two-stage lipid accumulation strategy was applied. It shows that the proposed two-stage process was able to mitigate the bacterial contamination and enhanced the lipid content and lipid productivity of Chlorella sp. ESP-31.
Aaronson, S., 1973. Effect of incubation temperature on the macromolecular and lipid content of the phytoflagellate Ochromonas danica. J. Phycol. 9, 111-113.
Amin, S., 2009. Review on biofuel oil and gas production processes from microalgae. Energy Convers. Manage. 50, 1834-1840.
Azma, M., Mohamed, M.S., Mohamad, R., Rahim, R.A., Ariff, A.B., 2011. Improvement of medium composition for heterotrophic cultivation of green microalgae, Tetraselmis suecica, using response surface methodology. Biochem. Eng. J. 53, 187-195.
Bashan, Y., Perez-Garcia, O., Escalante, F.M.E., de-Bashan, L.E., 2011. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Res. 45, 11-36.
Becker, E.W., 1994. Microalgae: Biotechnology and Microbiology. Cambridge University Press, Cambridge.
Behzadi, S., Farid, M.M., 2007. Review: examining the use of different feedstock for the production of biodiesel. Asia-Pacific Journal of Chemical Engineering 2, 480-486.
Bhatnagar, A., Chinnasamy, S., Singh, M., Das, K.C., 2011. Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl. Energy 88, 3425-3431.
Blanco, A.M., Moreno, J., Del Campo, J.A., Rivas, J., Guerrero, M.G., 2007. Outdoor cultivation of lutein-rich cells of Muriellopsis sp in open ponds. Appl. Microbiol. Biotechnol. 73, 1259-1266.
Bligh, E.G., Dyer, W.J., 1959. A rapid method for total lipid extraction and purification. Can.J.Biochem.Physiol. 37, 911-917.
Borowitzka, M.A., 1999. Commercial production of microalgae: ponds, tanks, tubes and fermenters. J. Biotechnol. 70, 313-321.
Boussiba, S., Vonshak, A., Cohen, Z., Avissar, Y., Richmond, A., 1987. Lipid and Biomass Production by the Halotolerant Microalga Nannochloropsis salina. Biomass 12, 37-47.
Brennan, L., Owende, P., 2010. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sust. Energ. Rev. 14, 557-577.
Bumbak, F., Cook, S., Zachleder, V., Hauser, S., Kovar, K., 2011. Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations. Appl. Microbiol. Biotechnol. 91, 31-46.
Carlsson, A.S., Beilen, J.B.v., Möller, R., Clayton, D., 2007. Micro- and macro-algae: utility for industrial applications : outputs from the EPOBIO project. CPL Press, UK.
Chen, C.Y., Saratale, G.D., Lee, C.M., Chen, P.C., Chang, J.S., 2008. Phototrophic hydrogen production in photobioreactors coupled with solar-energy-excited optical fibers. Int J Hydrogen Energy 33, 6878-6885.
Chen, C.Y., Yeh, K.L., Aisyaha, R., Lee, D.J., Chang, J.S., 2011. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresour. Technol. 102, 71-81.
Cheng, Y., Zhou, W.G., Gao, C.F., Lan, K., Gao, Y., Wu, Q.Y., 2009. Biodiesel production from Jerusalem artichoke (Helianthus Tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides. J. Chem. Technol. Biotechnol. 84, 777-781.
Chisti, Y., 2007. Biodiesel from microalgae. Biotechnol. Adv. 25, 294-306.
Chisti, Y., 2008. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 26, 126-131.
Chiu, S.Y., Kao, C.Y., Chen, C.H., Kuan, T.C., Ong, S.C., Lin, C.S., 2008. Reduction of CO2 by a high-density culture of Chlorella sp in a semicontinuous photobioreactor. Bioresour. Technol. 99, 3389-3396.
Chiu, S.Y., Kao, C.Y., Tsai, M.T., Ong, S.C., Chen, C.H., Lin, C.S., 2009. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour. Technol. 100, 833-838.
Chojnacka, K., Marquez-Rocha, F.J., 2004. Kinetic and Stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology 3, 21-34.
Collos, Y., Mornet, F., Sciandra, A., Waser, N., Larson, A., Harrison, P.J., 1999. An optical method for the rapid measurement of micromolar concentrations of nitrate in marine phytoplankton cultures. J. Appl. Phycol. 11, 179-184.
Colquhoun, D.M., 2001. Nutraceuticals: vitamins and other nutrients in coronary heart disease. Curr. Opin. Lipidol. 12, 639-646.
Costa, J.A.V., Colla, L.M., Duarte, P., 2003. Spirulina platensis growth in open raceway ponds using fresh water supplemented with carbon, nitrogen and metal ions. Zeitschrift fur Naturforschung Teil C Biochemie Biophysik Biologie Virologie 58, 76-80.
Courchesne, N.M.D., Parisien, A., Wang, B., Lan, C.Q., 2009. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J. Biotechnol. 141, 31-41.
Danquah, M.K., Ang, L., Uduman, N., Moheimani, N., Fordea, G.M., 2009. Dewatering of microalgal culture for biodiesel production: exploring polymer flocculation and tangential flow filtration. J. Chem. Technol. Biotechnol. 84, 1078-1083.
de Morais, M.G., Costa, J.A.V., 2007a. Biofixation of carbon dioxide by Spirulina sp and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J. Biotechnol. 129, 439-445.
de Morais, M.G., Costa, J.A.V., 2007b. Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol. Lett. 29, 1349-1352.
de Morais, M.G., Costa, J.A.V., 2007c. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Conv. Manag. 48, 2169-2173.
De Swaaf, M.E., Sijtsma, L., Pronk, J.T., 2003. High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol. Bioeng. 81, 666-672.
Del Campo, J.A., Garcia-Gonzalez, M., Guerrero, M.G., 2007. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl. Microbiol. Biotechnol. 74, 1163-1174.
DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F., 1956. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 28, 350-356.
Fernandez, F.G.A., Hall, D.O., Guerrero, E.C., Rao, K.K., Grima, E.M., 2003. Outdoor production of Phaeodactylum tricornutum biomass in a helical reactor. J. Biotechnol. 103, 137-152.
Fuentes, M.M.R., Fernandez, G.G.A., Perez, J.A.S., Guerrero, J.L.G., 2000. Biomass nutrient profiles of the microalga Porphyridium cruentum. Food Chem. 70, 345-353.
Fuentes, M.M.R., Sanchez, J.L.G., Sevilla, J.M.F., Fernandez, F.G.A., Perez, J.A.S., Grima, E.M., 1999. Outdoor continuous culture of Porphyridium cruentum in a tubular photobioreactor: quantitative analysis of the daily cyclic variation of culture parameters. J. Biotechnol. 70, 271-288.
Fujita, T., Aoyagi, H., Ogbonna, J., Tanaka, H., 2008. Effect of mixed organic substrate on α-tocopherol production by Euglena gracilis in photoheterotrophic culture. Appl. Microbiol. Biotechnol. 79, 371-378.
Fukuda, H., Kondo, A., Noda, H., 2001. Biodiesel fuel production by transesterification of oils. J. Biosci. Bioeng. 92, 405-416.
Funk, C.D., 2001. Prostaglandins and leukotrienes: Advances in eicosanoid biology. Science 294, 1871-1875.
Garcia, M.C.C., Miron, A.S., Sevilla, J.M.F., Grima, E.M., Camacho, F.G., 2005. Mixotrophic growth of the microalga Phaeodactylum tricornutum - Influence of different nitrogen and organic carbon sources on productivity and biomass composition. Process Biochem. 40, 297-305.
GCG. 1995. Wisconsin Package Version 8.1 Program Manual. Genetics Computer Group, Madison, WI, USA.
Gouveia, L., Marques, A.E., da Silva, T.L., Reis, A., 2009. Neochloris oleabundans UTEX #1185: a suitable renewable lipid source for biofuel production. J. Ind. Microbiol. Biotechnol. 36, 821-826.
Gouveia, L., Oliveira, A.C., 2009. Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol. 36, 269-274.
Griffiths, M.J., Harrison, S.T.L., 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 21, 493-507.
Grima, E.M., Perez, J.A.S., Camacho, F.G., Sevilla, J.M.F., Fernandez, F.G.A., 1994. Effect of growth-rate on the eicosapentaenoic acid and docosahexaenoic acid content of Isochrysis galbana in chemostat culture. Appl. Microbiol. Biotechnol. 41, 23-27.
Grobbelaar, J.U., Nedbal, L., Tichy, V., 1996. Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation. J. Appl. Phycol. 8, 335-343.
Guiry, M.D., John, D.M., Rindi, F., McCarthy, T.K., 2007. New Survey of Clare Island Volume 6: The Freshwater and Terrestrial Algae. Royal Irish Academy, Dublin.
Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41, 95-98.
Ho, S.H., Chen, C.Y., Lee, D.J., Chang, J.S., 2011. Perspectives on microalgal CO2-emission mitigation systems — A review. Biotechnol. Adv. 29, 189-198.
Ho, S.H., Chen, C.Y., Yeh, K.L., Chen, W.M., Lin, C.Y., Chang, J.S., 2010. Characterization of photosynthetic carbon dioxide fixation ability of indigenous Scenedesmus obliquus isolates. Biochem. Eng. J. 53, 57-62.
Holdt, S.L., Kraan, S., 2011. Bioactive compounds in seaweed: functional food applications and legislation. J. Appl. Phycol. 23, 543-597.
Hong, D.D., Hoang, T.L.A., Ngo, T.H.T., 2011. Study on biological characteristics of heterotrophic marine microalga-Schizochytrium mangrovei Pq6 isolated from Phu Quoc Island, Kien Giang Province, Vietnam. J. Phycol. 47, 944-954.
Hsieh, C.H., Wu, W.T., 2009. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour. Technol. 100, 3921-3926.
Hsueh, H.T., Chu, H., Yu, S.T., 2007. A batch study on the bio-fixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae. Chemosphere 66, 878-886.
Hu, B., Heredia-Arroyo, T., Wei, W., Ruan, R., 2011. Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenerg. 35, 2245-2253.
Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., Darzins, A., 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54, 621-639.
Huang, G.H., Chen, F., Wei, D., Zhang, X.W., Chen, G., 2010. Biodiesel production by microalgal biotechnology. Appl. Energy 87, 38-46.
Illman, A.M., Scragg, A.H., Shales, S.W., 2000. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb. Technol. 27, 631-635.
Ip, P.F., Chen, F., 2005. Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochem. 40, 733-738.
Jin, E.S., Melis, A., 2003. Microalgal biotechnology: Carotenoid production by the green algae Dunaliella salina. Biotechnol. Bioprocess Eng. 8, 331-337.
Kadam, K.L., 1997. Plant flue gas as a source of CO2 for microalgae cultivation. Economic impact of different process options. Energy Conv. Manag. 38, S505-S510.
Kumar, C.S., Ganesan, P., Suresh, P.V., Bhaskar, N., 2008. Seaweeds as a source of nutritionally beneficial compounds - A review. J. Food Sci. Technol.-Mysore 45, 1-13.
Lee, C.G., Palsson, B.O., 1994. High-density algal photobioreactors using light-emitting-diodes. Biotechnol. Bioeng. 44, 1161-1167.
Lee, Y.K., 2001. Microalgal mass culture systems and methods: Their limitation and potential. J. Appl. Phycol. 13, 307-315.
Lepage, G., Roy, C.C., 1984. Improved recovery of fatty-acid through direct trans-esterification without prior extraction or purification. J. Lipid Res. 25, 1391-1396.
Li, Q., Du, W., Liu, D.H., 2008a. Perspectives of microbial oils for biodiesel production. Appl. Microbiol. Biotechnol. 80, 749-756.
Li, X., Hu, H.Y., Gan, K., Sun, Y.X., 2010. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour. Technol. 101, 5494-5500.
Li, X.F., Xu, H., Wu, Q.Y., 2007. Large-scale biodiesel production from microalga Chlorella protothecoides through heterotropic cultivation in bioreactors. Biotechnol. Bioeng. 98, 764-771.
Li, Y.Q., Horsman, M., Wang, B., Wu, N., Lan, C.Q., 2008b. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 81, 629-636.
Liang, Y.N., Sarkany, N., Cui, Y., 2009. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett. 31, 1043-1049.
Liu, Z.Y., Wang, G.C., Zhou, B.C., 2008. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour. Technol. 99, 4717-4722.
Luning, K., Pang, S.J., 2003. Mass cultivation of seaweeds: current aspects and approaches. J. Appl. Phycol. 15, 115-119.
Mallick, N., 2002. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: A review. Biometals 15, 377-390.
Mandal, S., Mallick, N., 2009. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl. Microbiol. Biotechnol. 84, 281-291.
Mata, T.M., Martins, A.A., Caetano, N.S., 2010. Microalgae for biodiesel production and other applications: A review. Renew. Sust. Energ. Rev. 14, 217-232.
Metting, F.B., 1996. Biodiversity and application of microalgae. J. Ind. Microbiol. Biotechnol. 17, 477-489.
Moxley, G., Zhang, Y.H.P., 2007. More accurate determination of acid-labile carbohydrates in lignocellulose by modified quantitative saccharification. Energy Fuels 21, 3684-3688.
Neilson, A.H., Lewin, R.A., 1974. The uptake and utilization of organic carbon by algae: an essay in comparative biochemistry. Phycologia 13, 227-264.
Sluiter A., Hames B., Ruiz R., Scarlata C., Sluiter J., Templeton D., Crocker D., 2008. Determination of structural carbohydrates and lignin in biomass. Technical Report for Laboratory Analytical Procedure (LAP), NREL, USA.
O'Grady, J., Morgan, J.A., 2011. Heterotrophic growth and lipid production of Chlorella protothecoides on glycerol. Bioprocess. Biosyst. Eng. 34, 121-125.
Ogbonna, J.C., Ichige, E., Tanaka, H., 2002. Regulating the ratio of photoautotrophic to heterotrophic metabolic activities in photoheterotrophic culture of Euglena gracilis and its application to alpha-tocopherol production. Biotechnol. Lett. 24, 953-958.
Ogbonna, J.C., Tanaka, H., 2000. Light requirement and photosynthetic cell cultivation - Development of processes for efficient light utilization in photobioreactors. J. Appl. Phycol. 12, 207-218.
Ohlrogge, J., Browse, J., 1995. Lipid Biosynthesis. Plant Cell 7, 957-970.
Ota, M., Kato, Y., Watanabe, H., Watanabe, M., Sato, Y., Smith, R.L., Inomata, H., 2009. Fatty acid production from a highly CO2 tolerant alga, Chlorocuccum littorale, in the presence of inorganic carbon and nitrate. Bioresour. Technol. 100, 5237-5242.
Patterso.Gw. 1970. Effect of culture temperature on fatty acid composition of Chlorella sorokiniana. Lipids 5, 597-600.
Piorreck, M., Pohl, P., 1984. Formation of biomass, total protein, chlorophylls, lipids and fatty acids in green and blue-green algae during one growth phase. Phytochemistry 23, 217-223.
Posten, C., 2009. Design principles of photo-bioreactors for cultivation of microalgae. Eng. Life Sci. 9, 165-177.
Pulz, O., Gross, W., 2004. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 65, 635-648.
Radakovits, R., Jinkerson, R.E., Darzins, A., Posewitz, M.C., 2010. Genetic engineering of algae for enhanced biofuel production. Eukaryot. Cell 9, 486-501.
Ravelonandro, P.H., Ratianarivo, D.H., Joannis-Cassan, C., Isambert, A., Raherimandimby, M., 2008. Influence of light quality and intensity in the cultivation of Spirulina platensis from Toliara (Madagascar) in a closed system. J. Chem. Technol. Biotechnol. 83, 842-848.
Rodolfi, L., Zittelli, G.C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., Tredici, M.R., 2009. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102, 100-112.
Sanchez, J.F., Fernandez-Sevilla, J.M., Acien, F.G., Ceron, M.C., Perez-Parra, J., Molina-Grima, E., 2008. Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Appl. Microbiol. Biotechnol. 79, 719-729.
Scragg, A.H., Illman, A.M., Carden, A., Shales, S.W., 2002. Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenerg. 23, 67-73.
Sheehan, J., Dunahay, T., Benemann, J., Roessler, P., 1998. A look back at the U.S. Department of Energy's aquatic species program: biodiesel from algae. National Renewable Energy Laboratory, USA.
Shi, X.M., Chen, F., Yuan, J.P., Chen, H., 1997. Heterotrophic production of lutein by selected Chlorella strains. J. Appl. Phycol. 9, 445-450.
Siegenthaler, U., Stocker, T.F., Monnin, E., Luthi, D., Schwander, J., Stauffer, B., Raynaud, D., Barnola, J.M., Fischer, H., Masson-Delmotte, V., Jouzel, J., 2005. Stable carbon cycle-climate relationship during the late Pleistocene. Science 310, 1313-1317.
Silva-Aciares, F.R., Riquelme, C.E., 2008. Comparisons of the growth of six diatom species between two configurations of photobioreactors. Aquac. Eng. 38, 26-35.
Singh, S., Kate, B.N., Banerjee, U.C., 2005. Bioactive compounds from cyanobacteria and microalgae: An overview. Crit. Rev. Biotechnol. 25, 73-95.
Soletto, D., Binaghi, L., Lodi, A., Carvalho, J.C.M., Converti, A., 2005. Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources. Aquaculture 243, 217-224.
Solovchenko, A.E., Khozin-Goldberg, I., Didi-Cohen, S., Cohen, Z., Merzlyak, M.N., 2008. Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J. Appl. Phycol. 20, 245-251.
Sorokin, C., Krauss, R.W., 1958. The effects of light intensity on the growth rates of green algae. Plant Physiol. 33, 109-113.
Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A., 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101, 87-96.
Su, C.H., Giridhar, R., Chen, C.W., Wu, W.T., 2007. A novel approach for medium formulation for growth of a microalga using motile intensity. Bioresour. Technol. 98, 3012-3016.
Sydney, E.B., Sturm, W., de Carvalho, J.C., Thomaz-Soccol, V., Larroche, C., Pandey, A., Soccol, C.R., 2010. Potential carbon dioxide fixation by industrially important microalgae. Bioresour. Technol. 101, 5892-5896.
Takagi, M., Karseno, Yoshida, T., 2006. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J. Biosci. Bioeng. 101, 223-226.
Takagi, M., Watanabe, K., Yamaberi, K., Yoshida, T., 2000. Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochloris sp. UTEX LB1999. Appl. Microbiol. Biotechnol. 54, 112-117.
Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol. 24, 1596-1599.
Terry, K.L., 1986. Photosynthesis in modulated light - Quantitative dependence of photosynthetic enhancement on flashing rate. Biotechnol. Bioeng. 28, 988-995.
Tseng, C.K., 2001. Algal biotechnology industries and research activities in China. J. Appl. Phycol. 13, 375-380.
Uduman, N., Qi, Y., Danquah, M.K., Forde, G.M., Hoadley, A., 2010. Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. J. Renew. Sustain. Energy 2, 012701.
Ugwu, C.U., Aoyagi, H., Uchiyama, H., 2007. Influence of irradiance, dissolved oxygen concentration, and temperature on the growth of Chlorella sorokiniana. Photosynthetica 45, 309-311.
Ugwu, C.U., Aoyagi, H., Uchiyama, H., 2008. Photobioreactors for mass cultivation of algae. Bioresour. Technol. 99, 4021-4028.
Um, B.H., Kim, Y.S., 2009. Review: A chance for Korea to advance algal-biodiesel technology. J. Ind. Eng. Chem. 15, 1-7.
von Stockar, U., Marison, I., Janssen, M., Patino, R., 2011. Calorimetry and thermodynamic aspects of heterotrophic, mixotrophic, and phototrophic growth. J. Therm. Anal. Calorim. 104, 45-52.
Wang, B., Li, Y.Q., Wu, N., Lan, C.Q., 2008. CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechnol. 79, 707-718.
Xiong, W., Li, X.F., Xiang, J.Y., Wu, Q.Y., 2008. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl. Microbiol. Biotechnol. 78, 29-36.
Xu, H., Miao, X.L., Wu, Q.Y., 2006. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol. 126, 499-507.
Yeesang, C., Cheirsilp, B., 2011. Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresour. Technol. 102, 3034-3040.
Yeh, K.L., Chang, J.S., 2012. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresour. Technol. 105, 120-127.
Yeh, K.L., Chang, J.S., 2011. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: Implications for biofuels. Biotechnol. J. 6, 1358-1366.
Yeh, K.L., Chang, J.S., Chen, W.M., 2010. Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31. Eng. Life Sci. 10, 201-208.
Yongmanitchai, W., Ward, O.P., 1991. Growth of and omega-3-fatty-acid production by Phaeodactylum tricornutum under different culture conditions. Appl. Environ. Microbiol. 57, 419-425.
Yoo, C., Jun, S.Y., Lee, J.Y., Ahn, C.Y., Oh, H.M., 2010. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour. Technol. 101, S71-S74.
Yoon, J.H., Shin, J.H., Ahn, E.K., Park, T.H., 2008. High cell density culture of Anabaena variabilis with controlled light intensity and nutrient supply. J. Microbiol. Biotechnol. 18, 918-925.
Yun, Y.S., Lee, S.B., Park, J.M., Lee, C.I., Yang, J.W., 1997. Carbon dioxide fixation by algal cultivation using wastewater nutrients. J. Chem. Technol. Biotechnol. 69, 451-455.
Zemke-White, W.L., Ohno, M., 1999. World seaweed utilisation: An end-of-century summary. J. Appl. Phycol. 11, 369-376.
校內:2017-04-26公開