研究生: |
陳彥廷 Chen, Yen-Ting |
---|---|
論文名稱: |
InGaZnO薄膜組織與界面機制及光電特性研究 Microstructure, Interface Crystallized Mechanism and Optoelectronic Characteristics of InGaZnO Thin Films |
指導教授: |
洪飛義
Hung, Fei-Yi |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | IGZO 、薄膜 、薄膜電晶體 、通電 |
外文關鍵詞: | IGZO, thin film, thin film transistor, electrical current |
相關次數: | 點閱:102 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
InGaZnO(IGZO)非晶相氧化物半導體(AOS)是近年來備受關注的半導體材料之一,能在室溫沈積條件下,仍然擁有高於10 cm2V-1s-1的電子遷移率,極適合在低溫程序下進行高效能電子元件的研製。至今IGZO在穩定性方面仍有可靠度問題,因此鍍膜材料本質與元件界面機制的探討是IGZO可靠度研究的關鍵。本研究以薄膜基礎特性為基礎,進而製作元件探討界面結構與電性關係。實驗中選擇兩種不同組成(In:Ga:Zn:O原子比1114與2217)的IGZO系統,除解析組織結構特性之外,並論述其光電特性及主要界面機制。部份實驗選擇 1114系統為實驗材料,並設計製作成TFT元件,量測其通電特性與元件IGZO界面穩定度關係和通電誘發界面變態特性。
實驗結果顯示IGZO薄膜電阻隨著通氧量增加而增加。退火處理對薄膜電阻的影響大過通氧條件。退火溫度越高電阻則越低,當溫度高過250°C時變化則趨緩,且膜基地組成與縱深分佈具穩定化。此外,IGZO2217薄膜電阻低於IGZO1114。實際元件量測下,TFT元件特性受IGZO基地組成差異影響極大。若Zn元素缺乏,導致ZnO體積率降低,並造成載子遷移受到影響而大幅降低元件特性。退火製程能激發IGZO(1114; 2217)拉曼位移峰CH(466)。IGZO2217的In2O3-Ga2O3鍵結較強,使得CH峰值強度高於IGZO1114。In/IGZO薄膜基地在通電條件下,界面與基地促進擴散與再結晶進而明顯改善電性。
InGaZnO amorphous oxide semiconductor (AOS) is one of the most attention-getting materials in last years. IGZO has a good carrier mobility more than 10 cm2V-1s-1, even was deposited at room temperature; therefore it can be apply in the high-efficiency electronic devices and manufacture by low-temperature processes. However, there are still some reliability problems in the IGZO systems. The material basic properties and the device interface-effect mechanism are the keys to solve the problems. This present research is based on the film properties, and then produces devices to discuss the relationship between the interface structures and its electric resistance. It not only analysis material organization and structural characteristics, but also reports optoelectronic characteristics and the main interface mechanism of film by choosing IGZO system with different compositions (atom ratio: 1114 and 2217). Parts of the experiment choose 1114 system as the channel material of TFT devices, and then measure its electrifying properties and the relationship of IGZO interface structure in the device, finally then discuss the interface phase transformation characteristics was induced by electrical current testing.
Results of the experiments show the film resistance of IGZO increase with increasing the flow rate of depositing oxygen. There is a greater influence in annealing conditions than depositing oxygen flow rate. The higher annealing temperature has the lower film resistance. However the variation becomes smaller while the annealing temperature over 250 oC, and the film basic composition and the depth distribution become stable. Besides, the film resistance of IGZO2217 is lower than that of IGZO1114. It was found that the IGZO compositions influence the TFT device characteristics seriously after actually measuring. While lacks Zn element of IGZO, the ZnO volume ratio decreases. This affects the carrier mobility due to the decay of the device characteristics seriously. The annealing process can induce the Raman shift peak CH (466). A stronger In2O3-Ga2O3 bond of IGZO2217 for CH peak value is greater than IGZO1114. The interfaces and matrix of In/IGZO film possess a phase transformation after electrical current testing. The transformation improves the resistance of IGZO films.
1. G. Busch, “Early history of the physics and chemistry of semiconductors-from doubts to fact in a hundred years,” Eu. J. Phys., vol. 10, pp. 254–64, 1989.
2. A. H. Wilson, “The theory of electronic semiconductors I,” Proc. R. Soc. A, vol. 133, pp. 458–91, 1931.
3. A. H. Wilson, “The theory of electronic semiconductors II,” Proc. R. Soc. A, vol. 134, pp. 277–87, 1931.
4. B. Gudden, “Elektrizit¨atsleitung in kristallisierten stoffen unter ausschluss der metalle ergeb,” Exakten Naturwiss., vol. 3, pp. 116–59, 1924.
5. H.H. von Baumbach and C. Wagner, “Die elektrische leitf¨ahigkeit von Zinkoxyd und Cadmiumoxyd,” Z. Phys. Chem. B, vol. 22, pp. 199–211, 1933.
6. H. Dunwald and C. Wagner, “Untersuchungen uber fehlordnungserscheinungen in kupferoxydul und deren eintluss auf die elektrischen eigenschaften,” Z. Phys. Chem., vol. 22, pp. 212–25, 1933.
7. C. Wagner, “Theorie der geordneten mischphasen,” Z. Phys. Chem. B, vol. 22, pp. 181–94, 1933.
8. R. G. Gordon, “Criteria for choosing transparent conductors,” MRS Bull., vol. 25, pp. 52–7, 2000.
9. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors”, Nature, vol. 432, pp. 488, 2004.
10. H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, D. A. Keszler, “High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer”, Appl. Phys. Lett., vol. 86, 13503, 2005.
11. A. Suresh, P. Gollakota, P. Wellenius, A. Dhawan, J. F. Muth, “Transparent, high mobility InGaZnO thin films deposited by PLD”, Thin Solid Films, vol. 516, pp. 1326-1329, 2008.
12. P. Wellenius, A. Suresh, J.V. Foreman, H.O. Everitt, J.F. Muth, “A visible transparent electroluminescent europium doped gallium oxide device”, Materials Science and Engineering B, 146, pp. 252–255, 2008
13. H. Hosono, “Ionic Amorphous Oxide Semiconductors: materials design, carrier transport, and device application”, J. Non-Cryst. Sol. 352, pp. 851-858, 2006.
14. S. M. Rossnagel, “Handbook of Plasma Processing Technology”, Noyes Publications, Park Ridge, New Jersey, U.S.A., pp. 341-343, 1989.
15. W. L. Wang, “An Investigation on Microstructure and Opto-electrical Characteristics of ZnO-In/Ag-ZnO Thin Films Using the Electrical Current Mechanism”, Thesis for Master of Science of NCKU Institute of Nanotechnology and Microsystems Engineering, 2009.
16. D. S. Richerby, and A. Matthews, “Advanced surface Coating”, Chapman and Hall, New York, pp. 24, 1994.
17. H. Yamaguchi, O. Kitakami, S. Okamoto, Y. Shimada, K. Oikawa, and K. Fukamichi, “Effects of B and C on the Ordering of L10-CoPt Thin Films”, Appl. Phys. Lett., vol. 79, pp.2001-2003, 2001.
18. D. M. Mattox, “Handbook of Physical Vapor Deposition (PVD) Processing”, Noyes Publications, Westwood, New Jersey, pp.330-333, 1998.
19. R. F. Bunshah, “Deposition Technologies for Films and Coatings”, Noyes Publications, Park Ridge, New Jersey, U. S. A., 1982.
20. N. L. Dehuff, E. S. Kettenring, D. Hong, H. Q. Chiang, J. F. Wager, R. L Hoffman, C. H. Park, D. A. Keszler, ”Thin film transistors with zinc indium oxide channel layer”, Appl. Phys. Lett., vol. 97, 64505, 2005.
21. I. Keun, J. H. Lee Park and Sun-il Mhoa, “PHOTOLUMINESCENCE OF ZnGa2O4 MIXED WITH InGaZnO4, Solid State Communications”, Vol. 108, No. 11, pp. 823–826, 1998.
22. C. Annis, “Oxide Semiconductors: Potential Revolutionary AMOLED Fabrication Technology”, June 3rd, 2008.
23. T. C. (Richard) Fun, H. W. Baac and J. Kanicki, “Amorphous Metal Oxide Semiconductor Thin-Film Transistors”, http://The Kanicki Laboratory-Organic and Molecular Electronics.htm.
24. Y. Sun and J. A. Rogers, “Inorganic semiconductors for flexible electronics”, Adv. Mater., vol. 17, pp. 1897-1916, 2007.
25. N. Jong, M. Kitamura and Y. Arakawa, “High field-effect mobility amorphous InGaZnO transistors with aluminum electrodes”, Appl. Phys. Lett., vol. 93, 2008.
26. Y. K. Moon, S. Lee, D. H. Kim, D. H. Lee, C. O. Jeong, J. W. Park, “Application of DC Magnetron Sputtering to Deposition of InGaZnO Films for Thin Film Transistor Devices”, Japanese Journal of Applied Physics, vol. 48, 2009.
27. G. H. Kim, B. D. Ahn, H. S. Shin, W. H. Jeong, H. J. Kim, H. J. Kim, “Effect of indium composition ratio on solution-processed nanocrystalline InGaZnO thin film transistors”, APPLIED PHYSICS LETTERS, vol. 94, 2009.
28. Y. Kikuchi, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, “Device characteristics improvement of a-In-Ga-Zn-O TFTs by low-temperature annealing”, Thin Solid Films, vol. 518, 2010.
29. M. Nakata, K. Takechi, T. Eguchi, E. Tokumitsu, H. Yamaguchi, S. Kaneko, “Flexible High-Performance Amorphous InGaZnO4 Thin-Film Transistors Utilizing Excimer Laser Annealing”, Japanese Journal of Applied Physics, vol. 48, 2009.
30. D. P.l Gosain, T. Tanaka, “Instability of Amorphous Indium Gallium Zinc Oxide Thin Film Transistors under Light Illumination”, Japanese Journal of Applied Physics, vol. 48, 2009.
31. H. Godo, D. Kawae, S. Yoshitomi, T. Sasaki, S. Ito, H. Ohara, H. Kishida, M. Takahashi, A. Miyanaga, S. Yamazaki, “Temperature Dependence of Transistor Characteristics and Electronic Structure for Amorphous In–Ga–Zn-Oxide Thin Film Transistor”, Japanese Journal of Applied Physics, vol. 49, 2010.
32. K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, S. Kaneko, “Temperature-Dependent Transfer Characteristics of Amorphous InGaZnO4 Thin-Film Transistors”, Japanese Journal of Applied Physics, vol. 48, 2009.
33. S. Lee, J. H. Park, K. Jeon, S. Kim, Y. Jeon, D. H. Kim, D. M. Kim, J. C. Park, C. J. Kim, “Modeling and characterization of metal-semiconductor-metal-based source-drain contacts in amorphous InGaZnO thin film transistors”, APPLIED PHYSICS LETTERS, vol. 96, 2010.
34. J. Lee, J. S. Park, Y. S. Pyo, D. B. Lee, E. H. Kim, D. Stryakhilev, T. W. Kim, D. U. Jin, Y. G. Mo, “The influence of the gate dielectrics on threshold voltage instability in amorphous indium-gallium-zinc oxide thin film transistors”, APPLIED PHYSICS LETTERS, vol. 95, 2009.
35. S. Y. Lee, S. Chang, J. S. Lee, “Role of high-k gate insulators for oxide thin film transistors”, Thin Solid Films, vol. 518, 2010.
36. A. Sato, M. Shimada, K. Abe, R. Hayashi, Hideya Kumomi, Kenji Nomura, Toshio Kamiya, Masahiro Hirano, Hideo Hosono, “Amorphous In–Ga–Zn-O thin-film transistor with coplanar homojunction structure”, Thin Solid Films, vol. 518, 2009.
37. B. D. Ahn, H. S. Shin, G. H. Kim, J. S. Park, H. J. Kim, “A Novel Amorphous InGaZnO Thin Film Transistor Structure without Source/Drain Layer Deposition”, Japanese Journal of Applied Physics, vol. 48, 2009.
38. F. M. Smits, "Measurement of Sheet Resisitivities with the Four-Point Probe", Bell Syst. Tech. J., vol.37, pp. 711-718, 1958.
39. H. Bubert, and H. Jenett, “Surface and Thin Film Analysis”, Wiley-VCH, pp.208-210, 2002.
40. L. A. Bendersky, and F. W. Gayle, “Electron Diffraction Using Transmission Electron Microscopy”, J. Res. Natl. Inst. Stand. Technol., vol.106, pp. 997-1012, 2001.
41. C. V. Gulijk, K. M. Lathouder, and R. Haswell, “Characterizing Herring Bone Structures in Carbon Nanofibers Using Selected Area Electron Diffraction and Dark Field Transmission Electron Microscopy”, Carbon, vol.44, pp. 2950-2956, 2006.
42. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman Scattering and Biophysics”, J. Phys.: Condens. Matter, vol. 14, pp. R597-R624, 2002.
43. Y. S. and J. A. Rogers, “Inorganic Semiconductors for Flexible Electronics”, Adv. Mater., vol. 19, pp.1897–1916, 2007.