| 研究生: |
吳東翰 Wu, Tung-Han |
|---|---|
| 論文名稱: |
以聚(乙烯吡咯烷酮-共聚-丙烯酸)為保護劑製備鎳奈米線 Synthesis of Nickel Nanowires using Poly(vinyl pyrrolidone-co-acrylic acid)as a Protecting Agent |
| 指導教授: |
侯聖澍
Hou, Sheng-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 鎳奈米線 、聚乙烯醇 、聚乙烯吡咯烷酮 、丙烯酸 、磁性 |
| 外文關鍵詞: | Nickel nanowires, PVA, PVP, acrylic acid, magnetic properties |
| 相關次數: | 點閱:120 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以水溶性高分子聚乙烯醇(PVA)及聚(乙烯吡咯烷酮-共聚-丙烯酸)(PVPAA)為保護劑製備鎳奈米線。PVPAA由水相自由基聚合法製備,本研究使用的共聚物VP/AA比例組成經由1H NMR測量後得知為98/2、92/8及89/11。鎳奈米線的大小及外型可藉由調整PVA及PVPAA的濃度來控制並由SEM確認結果。鎳線直徑降低是因PVA及PVPAA會吸附於鎳金屬表面並形成立體障礙使鎳金屬不會二次凝聚。以PVPAA為保護劑的系統中,高分子中的AA可螯合鎳離子,使鎳離子被還原的速率減慢,因此鎳線直徑會更低。而藉由FT-IR及EDS的測量結果可確認高分子會吸附於鎳線表面。XRD的結果顯示鎳線為fcc結構,高分子濃度提高有助鎳晶體呈線成長。藉由SQUID VSM量測結果,可得知鎳奈米線之保磁力會隨鎳線直徑降低而提高。
In this study, water-soluble polymer poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone-co-acrylic acid) (PVPAA) copolymers were employed as protecting agents to synthesize Ni nanowires (NWs). The size and morphology of Ni NWs, obtained by SEM, can be controlled by the molar ratio of PVA/Ni2+ or copolymers/Ni2+. The XRD patterns of Ni NWs show characteristic diffractions for nanocrystalline fcc Ni and preferential orientation in wire axis. The coercivity of the Ni NWs obtained by SQUID VSM is enhanced when the diameter of Ni NWs decreases.
[1] Metaxas, K.C.; Ppayannakos, N.G., Chemical Engineering Journal, 2008, 140, 352-357.
[2] Ren, S.; Qiu, J.; Wang, C.; Xu, B.; Fan, Y.; Chen,Y., Chinese of Journal of Catalysis, 2007, 28, 651-656.
[3] Samardak, A.S.; Sukovatitsina, E.V.; Ognev, A.V.; Chebotkevich, L.A.; Mahmoodi, R.; Peighambari, S.M., Hosseini, M.G.; Nasirpouri, F., Journal of Physics: Conference Series, 2012, 345, 012011.
[4] Wang, C.; Han, X.; Xu, P.; Wang, J.; Du, Y.; Wang, X., Journal of Physical Chemistry C, 2010, 114, 3196-3203.
[5] Wu, Z.H.; Munoz, M.; Montero, O., Advanced Powder Technology, 2010, 21, 165-168.
[6] Bai, L.; Yuan, F.; Tang, Q., Materials Letters, 2008, 62, 2267-2270.
[7] Li, Z.; Han, C., Journal of Materials Science, 2006, 41, 3473-3480.
[8] Nik Roselina, N.R.; Azizan, A.; Hyie, K.M.;Mardziah, C.M.; Kalam, A.; Saad, NH.; Salleh, Z., Applied Mechanics and Materials, 2013, 391, 18-22.
[9] Nik Roselina, N.R.; Azizan, A; Lockman, Z., Sains Malaysiana, 2012, 1037-1042.
[10] Choi, J.Y.; Lee, Y.K.; Yoon, S.M.; Lee, H.C.; Kim, B.K.; Kim, J.M., Journal of the American Ceramic Society, 2005, 88, 3020-3023.
[11] Kim, K.M.; Lee, J.H.; Yoon, S.M.; Lee, H.C.; Lee, Y.K.; Choi, J.Y., Journal of Electroceramics, 2006, 339-343.
[12] Huang, G.Y.; Xu, S.M.; Xu, G.; Li, L.Y.; Zhang, L.F., Transactions of Nonferrous Metals Society of China, 2009, 389-393.
[13] Huaman, J.L.C.; Hironaka, H.; Tanaka, S.; Shinoda, K.; Miyamura, H.; Jeyadevan, B., CrystEngComm, 2013, 15, 729.
[14] Calandra, P., Materials Letters, 2009,63, 2416–2418.
[15] Cheng, Z.; Xu, J.; Zhone, H.; Song, J., Materials Chemistry and Physics, 2011, 131, 4-7.
[16] Maity, D.; Mollick, M.M.R.; Mondal, D.; Bhowmick, B.;Neogi, S.K.; Banerjee, A.; Chattopadhyay, S.; Bandyopadhyay, S.;Chattopadhyay, D., Carbohydrate Polymers, 2013, 98, 80-88.
[17] Zhu, Z.; Guo, X.; Wu, S.; Zhang, R.; Wang, J.; Li, L, Industrial & Engineering Chemistry Research, 2011, 50, 13848-13853.
[18] Sidhaye, D.S.; Bala, T.; Srinath, S.; Srikanth, H.; Poddar, P.; Sastry, M.; Prasad, B.L.V.; Journal of Physics Chemistry C, 2009, 3426-3429.
[19] Bala, T.; Gunning, R.D.; Venkatesan, M.; Godsell, J.F.; Roy, S.; Ryan, K.M., Nanotechanology, 2009, 20, 415603.
[20] Ranot, M.; Angappane, S.; Park, J., Physical Review B, 2010, 82, 054417.
[21] Guo, Y.; Wang, G.; Wang, Y.; Huang, Y. Wang, F.; Materials Research Bulletin, 2012, 47, 6-11.
[22] Kalbasi, J.R.; Nourbakhsh, A.A.; Babaknezhad, F., Catalysis Communications, 2011, 12, 955-960.
[23] Couto, G.G.; Klein, J.J.; Schreiner, W. H.; Mosca, D. H.; de Oliveira, A. J.A.; Zarbin, A. J. G., Journal of Colloid and Interface Science, 2007, 311, 461-468.
[24] Nouneh, K.; Oyama, M.; Diaz, R.; AbdLefdil, M., Journal of Alloys and Compounds, 2001, 509, 5882-5886.
[25] Liu, D.; Ren, S.; Wu, H., Zhang, Q.; Wen, L.; Journal of Materials Science, 2008, 43, 1974-1978.
[26] Roy, P.S.; Bhattacharya, S.K., RSC Advances, 2014, 4, 13892.
[27] H, K.C.; C, K.S., Journal of Nanoparticle Research, 2001, 3,127-132.
[28] Wang, D.P.; Sun, D.B.; Yu, H.Y.; Meng, H.M., Journal of Crystal Growth, 2008, 310, 1195-1201.
[29] Abdel-Aal, E.A., Malekzadeh, S.M.; Rashad, M.M.; El-Midany, A.A.; El-Shall, H.; Powder Technology, 2007, 17, 63-68.
[30] Wu, S.H.; Chen, D.H., Chemistry of Materials, 2000, 12,1354-1360.
[31] Chen, D.H.; Hsieh, C.H., Journal of Materials Chemistry, 2002, 12, 2412-2415.
[32] Nielsch, K.; Wehrpohn, R.B.; Barthel, J.; Kirschner, J.; Fischer, S.F.; Kronmuller, H., Schweinbock, T., Weiss, D.; Gosele, U., Journal of Magnetism and Magnetic Materials, 2002, 249, 234-240.
[33] Joo, J.; Lee, S.J.; Park, D.H.; Kim, Y.S.; Lee, Y.; Lee, C.J.; Lee, S.R., Nanotechnology, 2006, 17, 3506-3511.
[34] Bently, A.K.; Farhoud, M.; Ellis, A.; Lisensky, G.C.; Anne-Marie; Crone, W.C., Journal of Chemical Education, 2005, 82,765-768
[35] Zhang, L.Y.; Wang, J.; Wei, L.M.; Liu, P.; Wei, H.; Zhang, Y.F., Nano-Micro Letters, 2009, 49-52.
[36] Wang, J.; Zhang, L.Y.; Liu, P.;Lan, T.M.; Zhang, J.; Wei, L.M.; Kong, E. S.W.; Jiang, C.H.; Zhang, Y.F., Nano-Micro Letters, 2010, 134-138.
[37] Krishnadas, K.R.; Sajanlal, P.R.; Pradeep, T.; The Journal of Physical Chemistry C, 2011, 115, 4483- 4490.
[38] Zhang, G.; Zhang, T.; Lu, X.; Wang, W.; Qu, J.; Li, X. Journal of Physics Chemistry C, 2007, 111, 12663-12668.
[39] Jia, F.; Zhand, L.; Shang, X.; Yang, Y., Advanced Materials, 2008, 20, 1050-1054.
[40] Wang, D.P.; Sun, D.B.; Yu, H.Y.; Qiu, Z.G.;Meng, H.M., Materials Chemistry and Physics, 2009, 113, 227–232.
[41] Zhang, M.; Deng, J.; Zhang, M.; Li, M., Chinese Journal of Catalysis, 2009, 30, 447-452.
[42] Sun, L.; Chen, Q.; Tang, Y.; Xiong, Y., Chemical Communications, 2007, 2844-2846.
[43] Chen, Q.; Sun, L., European Journal of Inorganic Chemistry, 2009, 435-440.
[44] Liu, D.; Ren, S.; Wang, G., Journal of Materials Science, 2009, 44,108-113.
[45] Tang, S.; Zheng, Z.; Vongehr, S.; Meng, X.; Journal of Nanoparticle Research, 2011, 13, 7085-7094.
[46] Tang, S.; Vongehr, S.; Ren, H.; Meng, X., CrystEngComm, 2012, 14, 7209-7216.
[47] Kawamori, M.; Yagi, S.; Matsubara, E., Journal of The Electrochemical Society, 2011, 158, 8, E79-E83.
[48] Hu, X.; Yu, J.C., Chemistry of Materials, 2008, 20, 6743-6749.
[49] Sarkar, S.; Sinha, A.K.; Pradhan, M.; Basu, M.; Negishi, Y.; Pal, T.,
The Journal of Physical Chemistry C, 2011, 115, 1659-1673.
[50] Niu, H.; Chen, Q.; Ning, M.; Jia, Y.; Wang, X., Journal of Physics of Chemistry B, 2004, 108, 3996-3999.
[51] Taylor, J.J.; Sigmund, W.M., Journal of Colloid and Interface Science, 2010, 341, 298-302.
[52] Chikazumi, S.; Physics of Magnetism, 1964.
[53] Iijima, S., Nature, 1991, 354.
[54] Zhu, J.J.; Kan, C.X.; Wan, J.G.; Han, M.; Wang, G.H., Journal of Nanomaterials, 2011, 982547
[55] Sun, Y.; Gates, B.; Mayers, B.; Xia, Y.; Nano-Letters, 2002, 2, 165-168
[56] Khanna, P.K.; Gokhale, R.; Subbarao, V.V.V.S.; Kasi Vishwanath, A.; Das, B.K.; Satyanarayana, C.V.V., Materials Chemistry and Physics, 2005, 92, 229-233.
[57] Patil, R.S.; Kokate, M.R.; Jambhale, C.L.; Pawar, S.M., Han, S.H.; Kolekar, S.S., Advances in Natural Sciences: Nanoscale and Nanotchnology, 2012, 3, 015013.
[58] Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H., Advanced Materials, 2003, 15, 353-389.
[59] Vitta, S., Journal of Applied Physics, 2007, 101, 063901.
[60] Hwang, J.H.; Dravid, V.P.; Journal of Material Research, 1997, 12, 1076.
[61] Wiely, B.; Sun, Y.; Mayers, B.; Xia, Y., Chemistry Europe Journal, 2005, 11, 454-463.
[62] Reed, W.F.; Journal of Applied Polymer Science, 1999, 73, 2359-2368.
[63] 程偉銘, 製備一維奈米線及樹枝狀結構物, 國立成功大學化學工程學系博士論文, 2012
校內:2019-09-02公開