| 研究生: |
林莉婕 Lin, Li-Jie |
|---|---|
| 論文名稱: |
以中孔洞氧化矽空心球材料混合向列型液晶製備具有記憶效應之智慧玻璃窗 Realization of Smart Window with Memory Effect by Mixing Hollow Sphere Mesoporous Silica with Nematic Liquid Crystal |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 智慧型玻璃窗 、中孔洞氧化矽 、液晶5CB 、記憶效應 |
| 外文關鍵詞: | Smart window, Mesoporous silica, 5CB liquid crystal, Memory effect |
| 相關次數: | 點閱:105 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用環境友善、具生物可降解性之非離子型界面活性劑AEO作為模板及乳化劑,分別使用矽酸鈉及TEOS為氧化矽源,以一鍋化之軟模板法合成出微米大小之空心球型中孔洞氧化矽材料。為了可以合成球型完整且達到孔徑大小與結構之可調控性,在研究中嘗試四種不同親水鏈長度之AEO與兩種氧化矽源,並改變合成pH值、反應系統濃度與水熱、鍛燒、乙醇萃取等後處理方法,來探討對材料特性的改變以及應用於智慧玻璃窗之影響。並且也利用同樣具有生物可降解性之界面活性劑gelatin,經由硬模板法合成空心管狀之中孔洞氧化矽材料,同上述方法調控材料構型及孔洞性質,並比較應用於智慧玻璃之差異。
合成出之空心球、空心管、實心球等不同構型之中孔洞氧化矽材料,其構型尺度分布寬達4–5個數量級,交錯聯通的空隙及孔洞適合均勻混合向列型液晶5CB,封裝成智慧玻璃窗。透過直接修飾疏水性官能基矽烷,降低表面作用力,使智慧玻璃窗在通入電場並移去後仍保有液晶分子整齊排列之記憶效應,保有透明之外觀,再透過簡單的按壓玻璃表面或加熱-冷卻之相變化使液晶重回混亂態,並達成節能型智慧玻璃窗之應用。同樣利用表面改性方法,將氧化矽材料在乙醇溶液中加熱迴流後將表面官能基取代為Si-OH,增加材料表面極性以及與液晶分子間的作用力,可製備出以電場控制亮暗之傳統開關型智慧玻璃窗。無論是節能記憶型或傳統開關型,皆有應用於綠色建材之潛力,運用電場調控玻璃窗之穿透度以減少冷、暖氣與照明之能耗。
Existing liquid crystal smart windows require a continuous power supply to maintain a transparent state, and therefore incur a high power consumption. In this study, a practical energy-saving strategy is demonstrated by mixing 5CB nematic liquid crystal with hollow sphere mesoporous silica (HSMS) synthesized using a soft-templating method under pH=5.5–6.0 and then hydrophobically modified by chlorotrimethylsilane. The optical microscopy observations show that the hierarchical sphere structure divides the 5CB molecules into a large number of scattering regions, and therefore produces a dense opaque state. For example, 7.5 wt% HSMS addition results in an opaque state with a transmittance as low as 23%. However, given an applied voltage of 80 V, the 5CB molecules are almost perfectly aligned and a transparent state with a saturated transmittance of 100% is obtained. Notably, the weak anchoring force between the hydrophobically modified HSMS and the liquid crystal material resists the realignment of the 5CB molecules following the removal of the electrical field and results in a residual transmittance of over 90% for more than 2 hours. Overall, the results presented in this study show that the addition of HSMS material to 5CB liquid crystal enhances the memory effect and therefore makes possible the realization of smart windows with a reduced energy consumption.
1. D. H. Everett, Pure Appl. Chem., 1972, 31, 578.
2. C.-G. Wu, T. Bein, Science, 1994, 264, 1757.
3. C.-G. Wu, T. Bein, Science, 1994, 266, 1013.
4. C.-G. Wu, T. Bein, Chem. Mater., 1994, 266, 1109.
5. Y. S. Lee, D. Surjadi, J. F. Rathman, Langmuir, 1996,12, 6202.
6. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 1992, 359, 710.
7. G. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. SchuÈ th and G. D. Stucky, Nature, 1994, 368, 317.
8. S. Inagaki, A. Koiwai, N. Suzuki, Y. Fukushima and K. Kuroda, Bull. Chem. Soc. Jpn., 1996, 69, 1449.
9. P. T. Tanev and T. J. Pinnavaia, Science, 1995, 267, 865.
10. P. T. Tanev and T. J. Pinnavaia, Science, 1996, 271, 1267.
11. S. A. Bagshaw, E. Prouzet and T. J. Pinnavaia, Science, 1995, 269, 1242; S. A. Bagshaw and T. J. Pinnavaia, Angew. Chem., Int. Ed. Engl., 1996, 35, 1102.
12. S. A. Bagshaw, J. Mater. Chem., 2001,11, 831-840.
13. J-M. Kim and G. D. Stucky, Chem. Commun., 2000, 1159; S-S Kim, T. R. Pauly and T. J. Pinnavaia, Chem. Commun., 2000, 1661; W. Zhang, B. Glomski, T. R. Pauly and T. J. Pinnavaia, Chem. Commun., 1999, 1803.
14. W. Wang, S. Xie, W. Zhou and A. Sayari, Chem. Mater., 2004, 16, 1756-1762.
15. J. Fan, C. Yu, F. Gao, J. Lei, B. Tian, L. Wang, Q. Luo, B. Tu, W. Zhou and D. Zhao, Angew. Chem., 2003, 115, 3254-3258.
16. A. Vinu, V. Murugesan and M. Hartmann, Chem. Mater., 2003, 15, 1385-1393.
17. H.-P. Lin, C.-Y. Tang and C.-Y. Lin, J. Chin. Chem. Soc., 2002, 49, 981-988.
18. V. Alfredsson and M. W. Anderson, Chem. Mater., 1996, 8, 1141-1146.
19. H.-P. Lin and C.-Y. Mou, Acc. Chem. Res., 2002, 35, 927-935.
20. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y.-U. Kwon, O. Terasaki, S.-E. Park and G. D. Stucky, J. Phys. Chem. B, 2002, 106, 2552-2558.
21. A. Bhaumik and S. Inagaki, J. Am. Chem. Soc., 2001, 123, 691-696.
22. Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Qiu, D. Zhao and F. S. Xiao, Angew. Chem. Int. Ed., 2001, 40, 1258-1262.
23. A. Walcarius, M. Etienne and B. Lebeau, Chem. Mater., 2003, 15, 2161-2173.
24. T. Yokoi, H. Yoshitake and T. Tatsumi, J. Mater. Chem., 2004, 14, 951-957.
25. Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie and H. Xu, Angew. Chem. Int. Ed., 2003, 42, 413-417.
26. Z. Y. Zhong, Y. D. Yin, B. Gates and Y. N. Xia, Adv. Mater., 2000, 12, 206.
27. P. Jiang, J. F. Bertone and V. L. Colvin, Science, 2001, 291, 453-457; B. G. Trewyn, I. I. Slowing, S. Giri, H. –T. Chen and V. S. –Y. Lin, Acc. Chem. Res., 2007, 40, 846–853.
28. T. F. Todros, Surfactants, Academic Press: London, 1984.
29. M. R. Porter, Handbook of Surfactants, London, 2nd edn, 1994.
30. J. Iraelachvili, S. Marcelja and R. Horn, Q. Rev. Biophys., 1980, 13, 121-200.
31. J. N. Israelachvili, Intermolecular and Surfaces Forces, Academic Press, London, 2nd edn, 1992.
32. W.C. Griffin, J. Soc. Cosmet. Chem., 1949, 1, 311–326; http://www.oucc.com.tw/tw/ (東聯化工)
33. Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, G. D. Stucky, Chem. Mater., 1994, 6, 1176.
34. D. Zhao, J. Feng, Q. Hou, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science, 1998, 273, 548.
35. H. P. Lin and C. Y. Mou, Acc. Chem. Rev., 2002, 35, 927.
36. C. J. Brinker and G. W. Scherer, J. Non-Cryst. Solids., 1985, 70, 301.
37. R. Aelion, A. Loebel and F. Eirich, J. Am. Chem. Soc., 1950, 72, 5705-5712.
38. S. –H. Wu, C. –Y. Mou and H. –P. Lin, Chem. Soc. Rev., 2013, 42, 3862; H. X. Li, Z. F. Bian, J. Zhu, D. Q. Zhang, G. S. Li, Y. N. Huo, H. Li and Y. F. Lu, J. Am. Chem. Soc., 2007, 129, 8406; C. Y. Chang-Chien, C. H. Hsu, T. Y. Lee, C. W. Liu, S. H. Wu, H. P. Lin, C. Y. Tang and C. Y. Lin, Eur. J. Inorg. Chem., 2007, 3798; Y. H. Ng, S. Ikeda, T. Harada, S. Higashida, T. Sakata, H. Mori and M. Matsumura, Adv. Mater., 2007, 19, 597; Y. Zhu, J. Shi, W. Shen, X. Dong, J. Feng, M. Ruan, Y. Li, Angew. Chem., 2005, 117, 5213–5217.
39. Q. Zhang, W. S. Wang, J. Goebl, Y. D. Yin, Nano Today, 2009, 4, 494; X. Xu and S. A. Asher, J. Am. Chem. Soc., 2004, 126, 7940-7945; G. Guan, Z. Zhang, Z. Wang, B. Liu, D. Gao and C. Xie, Adv. Mater., 2007, 19, 2370-2374.
40. 張家勝, “硬模板法合成中孔洞氧化矽空心球在液晶顯示器之應用”, 國立成功大學化學研究所碩士論文, 2013.
41. 林勺乃, “以表面活化法合成氧化矽空心球及核-殼結構奈米粒子”, 國立成功大學化學研究所碩士論文, 2015.
42. L. Sepulveda and J. Cortes, J. Phys. Chem., 1985, 89, 5322-5324.
43. D. W. Berreman, JOSA, 1973, 63, 1374-1380.
44. A. J. Lovinger, K. R. Amundson and D. D. Davis, Chem. Mater., 1994, 6, 1726-1736.
45. Lampert, Circ. Dev. Mag., IEEE, 1992, 8, 19-26.
46. R. Baetens, B. P. Jelle, A. Gustavsen, Sol. Energ. Mater. Sol. Cells, 94, 2010, 87–105.
47. K. S. Sing, Pure Appl. Chem., 1985, 57, 603-619.
48. A. Glushchenko, H. Kresse, V. Reshetnyak, Y. Reznikov, and O. Yaroshchuk, Liq. Cryst., 1997, 23, 2, 241-246.
49. 王暐翔, “孔洞氧化矽、碳材@氧化矽及矽酸鈦複合材料的合成與應用”, 國立成功大學化學研究所碩士論文, 2015.
50. E. Castellon, M. Zayat and D. Levy, Phys. Chem. Chem. Phys., 2009, 11, 6234–6241.
51. 陳怡蓁, “孔洞氧化矽材料對向列型液晶性質之效應”, 國立成功大學化學研究所碩士論文, 2016.
校內:立即公開