| 研究生: |
粘永堂 Nien, Yung-Tang |
|---|---|
| 論文名稱: |
摻雜過渡元素之硫屬螢光粉的合成、微結構與發光特性研究 Study of Synthesis, Microstructure and Luminescence of Transition Metals-doped Chalcogenide Phosphors |
| 指導教授: |
陳引幹
Chen, In-Gann |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 168 |
| 中文關鍵詞: | 過渡元素 、光致發光 、奈米粒子 、拉曼光譜 、硫化鋅 、電致發光 |
| 外文關鍵詞: | photoluminescence, transition metals, electroluminescence, zinc sulfide, Raman, nanoparticles |
| 相關次數: | 點閱:103 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
螢光材料已廣泛被使用在日常生活中,如電視機、電漿與場發射等顯示器,以及照明用之螢光燈、發光二極體等,因此螢光材料之基礎研究與深入的探討開發,勢必將對未來人類的生活發展有莫大助益,尤其對於當下地球能源之枯竭及氣候暖化可提供緩解之道。本論文研究之內容包括探討不同過渡金屬離子(Cu、Mn、Cd),與其摻雜量對於硫化鋅(ZnS)晶體結構、電致發光、光致發光與微結構等的影響。另外,以濺鍍與硫化等方式來製備二元螢光薄膜層(ZnS/ZnO:Mn),其具有以紫外光激發產生白光之潛力。同時本論文亦探討奈米粒子(nanoparticles, NPs)於螢光粉領域之應用性,包括以ZnS NPs取代傳統螢光粉高溫熱處理製程之助溶劑,ZnS:Mn NPs表面披覆二氧化矽材料之光學表現,及硒化鎘(CdSe)、硫化鎘(CdS)與硫化鋅鎘(Zn1-xCdxS)等奈米粒子的粒徑分析。
由X光繞射(XRD)的結構分析可知,銅摻雜(>200ppm)所產生之CuxS析出相的確能使硫化鋅結構轉換為立方晶,藉此也可知銅於硫化鋅的固溶度約為400ppm。隨著銅摻雜量的增加,觀察到硫化鋅顆粒會逐漸成長,這是由於添加之硫化銅或CuxS析出相會於高溫熔融,因此促進了物質間的傳輸以及擴散。拉曼光譜圖的波峰變化也表示硫化鋅確實隨銅摻雜量發生晶體結構上的轉變,同時由波峰的紅移,可知銅離子的摻雜使硫化鋅晶格產生張應變,且應變量是隨摻雜量增加而增大。除了硫化鋅結構與晶格的變化外,拉曼光譜圖也顯示硫化鋅粉末中(Cu>400ppm)存在著CuxS析出相(~470cm-1),此與電子微探儀(EPMA)、X光電子光譜儀(XPS)及採用超薄切片技術製作之穿透式電子顯微鏡(TEM)試片的觀察都相同。因此隨銅摻雜量增加(≧400ppm),硫化鋅於可見光波段的吸收值上升,是CuxS析出物濃度增加所引起。然而雖然所有不同銅摻雜量(40-5000ppm)之硫化鋅都具有放射藍綠光之光致發光現象,但只有銅摻雜量大於200ppm的硫化鋅能在電場激發下發光,主要是因CuxS析出物能於電場下提供激發活化中心所需的載子。
藉由添加錳與鎘離子於上述之硫化鋅銅(ZnS:Cu,Cl)粉末中,可產生化學式為ZnS:Cu,Mn,Cl與 Zn1-xCdxS:Cu,Cl(x=0-0.9)之不同顏色的電致發光螢光粉,研究發現錳離子與鎘離子(x≧0.2)的添加,反而都促使硫化鋅銅的晶體結構轉換為六方晶,不同濃度銅離子(40-104ppm)的添加也無法改變此類合金之晶體結構,亦即其結構都仍保持為六方晶,表示錳與鎘離子的添加將提高硫化鋅晶體結構轉換所需的能量(△Ghex.→cub.),造成CuxS析出時所釋放的熱量(△HCuxS)無法轉換硫化鋅晶格。掺錳與銅之硫化鋅(Cu:400ppm, Mn/Cu=7、14)的光致發光波峰位於583nm,而掺銅與鎘之硫化鋅(Zn1-xCdxS:Cu,Cl)的光致發光,當鎘摻雜量(x)為0.6與0.7時,光致發光譜圖顯示其放射光波峰已位於紅光波段(614nm與660nm)。另外,掺錳與鎘之硫化鋅銅都具有電致發光現象,此表示試片中的確含有CuxS析出相,但卻無法使硫化鋅產生晶體結構上的轉換。
以射頻濺渡法製作之ZnO:Mn螢光層包含兩放射光波峰,一為位於大約400nm之近能帶邊緣放射光,另ㄧ為由錳離子4T1(4G)→6A1(6S)躍遷所產生之藍光(465nm)。經三十小時的硫化可將厚度約450nm之ZnO:Mn螢光層轉換為顆粒狀的ZnS:Mn,其光致發光波峰位置則由465nm紅移至573nm,這是由於錳離子之4T1(4G)→6A1(6S)躍遷能量(△E)受主體材料的結晶場強度影響。經由其光致發光譜圖的能量分佈計算可知,ZnO:Mn的色度座標位於(0.13,0.06),ZnS:Mn則位於(0.46,0.54),兩者連線將通過色度坐標圖上的白光區域,表示此二元螢光材料(ZnS/ZnO:Mn)可藉由其厚度控制來混成白光。
以化學溶液共沉法合成之ZnS NPs於TEM下顯示粒徑介於10-30nm,熱分析(DTA/TG)可發現其相轉換溫度降低至大約600oC,而熔點約在884oC,ZnS NPs之XRD圖譜亦顯示相同結果。藉由添加不同比例(0-100wt%)上述之ZnS NPs於ZnS:Mn螢光粉製程,發現1wt%之添加量能有效地提升ZnS:Mn的光致發光強度,推測這是由於ZnS NPs能在高溫熔融,因此促進發光中心(Mn2+)的擴散,而避免了濃度淬滅效應的發生。XRD與TEM顯示立方晶結構之ZnS:Mn NPs(D111~3.1nm)經四乙基矽(TEOS)等溶液反應後,能散佈在粒徑約50-100nm的無晶微顆粒中,藉由特性X光(EDS)與位於105eV之 Si L2,3電子能量損失近邊緣結構(ELNES)的分析,得知這無晶材料為SiO2。利用XRD建立之ZnS:Mn/SiO2檢量線,可知隨著ZnS:Mn NPs的添加量增加,表面的SiO2披覆量會減少。其中以添加量為2g之試片具有最佳的光致發光強度。藉由漫射實驗可知SiO2的披覆能降低ZnS:Mn NPs表面之缺陷濃度,避免能量消散在此些淬滅中心,同時也知SiO2是以化學鍵結方式披覆於ZnS:Mn NPs,並非只是物理式吸附。
CdSe NPs的LO拉曼位置分別為204.78cm-1與201.39cm-1,由聲子侷限效應可知其粒徑應分別為3.52nm與2.26nm,此結果與TEM及吸收光譜圖(UV-vis)之第一激子吸收峰的推導結果相符。另外也可由CdSe NPs之拉曼位置偏移得知試片存在著壓應力(ε<0),而這壓應力推測是由VSe或VCd等空缺所導致的,此相同於光致發光所觀察到的寬廣放射峰。然而本實驗製備之CdS NPs的拉曼偏移量卻隨不同量測位置而改變,有的拉曼位置是介於293.97cm-1至300.69cm-1,表示其粒徑分佈在3.5nm~8nm。TEM的觀察也顯示這些奈米粒子確實存在著寬廣的粒徑分佈,就如同在光致發光與UV-vis等光譜圖所發現之寬廣與不對稱的波峰。Zn1-xCdxS合金NPs的拉曼位置除了受粒徑大小產生偏移外,同時合金的組成也會改變其位置,實驗發現合金所造成的效應大於粒徑,故導致合金NPs成長時其拉曼位置會紅移。
Phosphor materials have been widely used in solid state lighting, displays and medical imaging by doping with transition or rare-earth metals. Here we studied the influence of transition metals (Cu, Mn, Cd) on the structure and optical properties of electroluminescent ZnS powders, the preparation of two-band emission of ZnS/ZnO:Mn film for the white light usage, and the Raman properties of ZnS, CdSe, CdS and Zn1-xCdxS nanoparticles (NPs).
A series of ZnS:Cu,Cl powders with Cu additions ranging from 40 to 5000ppm were studied by firing at 750-1050oC for 2h in the atmosphere of 3%H2/Ar. X-ray diffraction (XRD) and Raman analyses showed that ZnS:Cu,Cl samples with Cu additions of ≥400ppm exhibited a structure transformation from hexagonal to cubic, which was supposed to result from the Cu incorporation or CuxS precipitation (470cm-1). The red shift of the longitudinal optical (LO) mode in ZnS:Cu,Cl with the increased Cu suggested that Cu ions entered ZnS lattice interstitially and created a tensile strain. The whole series of ZnS:Cu,Cl samples showed significant photoluminescence (PL) in the region of 400-600nm; however, only the samples with Cu additions of ≥400ppm revealed measurable electroluminescence (EL). This difference was supposed to be a result of nano-sized CuxS precipitation in ZnS during the firing treatment, where CuxS acted as the electron emission source to induce the activation of luminescent centers.
Red electroluminescent phosphor powders of ZnS:Cu,Mn,Cl and Zn1-xCdxS:Cu,Cl (x=0-0.9) were also prepared by a solid state reaction at 900oC for 2h in a reducing atmosphere. XRD showed that the structure of Zn1-xCdxS:Cu,Cl (Cu:800ppm) transformed from cubic to hexagonal as x increased to 0.2. Similarly, the addition of Mn preferred to the formation of hexagonal ZnS. This unavailability of CuxS to induce the cubic structure transformation in ZnS:Cu,Mn,Cl and Zn1-xCdxS:Cu,Cl may be due to the fact that Mn tends to bond to S in the hexagonal and Zn1-xCdxS stabilizes in a hexagonal structure. EL measurements revealed broad emission bands at 583nm and 614nm for ZnS:Cu,Mn,Cl and Zn0.4Cd0.6S:Cu,Cl, respectively.
ZnO:Mn capped with ZnS:Mn (ZnS/ZnO:Mn) phosphor layers were prepared by thermal sulfidation of ZnO:Mn films deposited on Si(100) substrate with the method of RF magnetron sputtering. The PL of the ZnS/ZnO:Mn layer showed a three-band emission, i.e. UV, blue (465nm) and orange (573nm) bands. The chromaticity coordinate of the two-component ZnS/ZnO:Mn phosphor layer, which was estimated from the peak and width of each emission band, showed the potential of producing white light emission.
PL measurements revealed that ZnS:Mn powders fired with 1wt% ZnS NPs showed the optimal luminescence intensity when compared to those without or with more ZnS NPs (>1wt%). An appropriate amount of ZnS NPs (1wt%) acting as the flux in the firing process was inferred to avoid the inhomogeneous distribution of Mn2+ as well as the migration of excitation energy to quenching sites and therefore to result in the enhanced PL intensity.
ZnS:Mn NPs (~3.1nm) of a cubic structure were prepared by a co-precipitation method and then dispersed with various weights (0.5-8g) into a solution containing ammonium hydroxide, ethanol and tetraethyl orthosilicate (TEOS) for surface coating. The optical properties of PL and diffuse reflection of the SiO2-coated ZnS:Mn powders were found to depend on the quantity of ZnS:Mn NPs in the coating solution. The increased PL intensity of ZnS:Mn at 590nm after SiO2 coating was proposed to result from the inhibition of excitation energy transfer to quenching centers or surface states based on the observation of the reduced absorption in the region of 370-450nm. CdSe, CdS and Zn1-xCdxS NPs were prepared by the TOP process and studied with a Raman spectrometer, revealing very homogeneous size distributions and comparable sizes with the transmission electron microscope (TEM) and UV-vis measurements.
1. P.E.A. Lenard, F. Schmidt, and R. Tomaschek, “Phosphoreszenz und Fluoreszenz”, in Handbuch der Experimentalphysik, Bd. 23, 1. u. 2. Teil, Akademie Verlagsgesellschaft, Leipzig (1928)
2. H.W. Leverenz, An Introduction to Luminescence of Solids, John Wiley & Sons, New York (1950)
3. G. Blasse and B.C. Grabmaier, Luminescent Materials, Springer, Berlin (1994)
4. R.C. Ropp, Luminescence and the Solid State, Elsevier, Amsterdam, (1991)
5. A. Jablonski (1898-1980): Born in Voskresenovka, Ukraine. Started studying physics at Kharkov University and continued after the 1st World War at Warsaw under S. Pienkowski. He received his PhD in 1930. In 1935 he suggested the famous diagram, commonly known under his name, which makes it possible to explain both the kinetics and spectra of fluorescence, phosphorescence and delayed fluorescence.
6. 劉如熹、紀喨勝,“紫外光發光二極體用螢光粉介紹”,全華,臺北市(2003)
7. M. Tamatani, “Luminescence centers of transition metal ions”, in Phosphor Handbook, edited by S. Shionoya and W.M. Yen, CRC press, Boca Raton, 153-176 (1999)
8. Y. Tanabe and S. Sugano, J. Chem. Phys. Jpn., 9, 753 (1954)
9. G.H. Dieke, H.M. Crosswhite, and H. Crosswhite, Spectra and Energy Levels of Rare Earth Ions in Crystals, Interscience, New York (1968)
10. American Institute of Physics Handbook, 3rd edition, McGraw-Hill, 7-25 (1972)
11. T. Kano, “Luminescence centers of rare-earth ions”, in Phosphor Handbook, edited by S. Shionoya and W.M. Yen, CRC press, Boca Raton, 177-200 (1999)
12. S. Shionoya, “Photoluminescence”, in Luminescence of solids, edited by D.R. Vij, Plenum Press, New York, 95-133 (1998)
13. J.R. Haynes and W.C. Westphal, “The drift mobility of electrons in silicon”, Phys. Rev., 86, 680-680 (1952)
14. G. Destriau, J. Chim. Phys., 33, 620 (1936)
15. S. Tanaka, H. Kobayashi, and H. Sasakura, “Inorganic electroluminescence”, in Phosphor Handbook, edited by S. Shionoya and W.M. Yen, CRC press, Boca Raton, 601-612 (1999)
16. 陳秀蓮,”新材料革命”,63,牛頓出版社,台灣(1986)
17. A.E. Thomas, G.J. Russell and J. Woods, “Preparation of low resistivity zinc sulphide”, J. Crystal Growth, 63, 265-275 (1983)
18. E. Lendvay, “Formation of CuxS and Zn secondary phases in ZnS single crystals”, J. Crystal Growth, 59, 384-390 (1982)
19. A.A. Bundel and A.A. Visnjakov, Fiz. Tverd. Tela (Soviet Physics-Solid State), 115 (1969)
20. A.G. Fischer, “Electroluminescent lines in ZnS powder particles: Models and comparison with experience”, J. Electrochem. Soc., 110, 733-748 (1963)
21. F.F. Morehead, “Electroluminescence”, in Physics and Chemistry of II-VI Compounds, edited by M. Aven and J.S. Prener, North-Holland, Amsterdam, 611-656 (1967)
22. A. Vecht and R. Ellis, “Direct current electroluminescence in the zinc sulphide/copper/manganese system”, Nature, 210, 1251-1252 (1966)
23. A. Vecht, N.J. Werring, R. Ellis, and P.J.F. Smith, “Direct-current electroluminescence in zinc sulphide: State of the art”, Proc. IEEE, 61, 902-907 (1973)
24. T. Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama, and M. Aono, “Nanometer-scale switches using copper sulfide”, Appl. Phys. Lett., 82, 3032-3034 (2003)
25. M.S. Waite and A. Vecht, “Direct-current electroluminescence in rare-earth-activated zinc sulphide powder layers”, Appl. Phys. Lett., 19, 471-473 (1971)
26. L.X. Zhou, “Cu+ migration and luminescence aging in ACEL ZnS:Cu phosphor grains”, Chinese J. Lumin.(發光學報), 28, 49-52 (2007)
27. M. Warkentin, F. Bridges, S.A. Carter, and M. Anderson, “Electroluminescence materials ZnS:Cu,Cl and ZnS:Cu,Mn,Cl studied by EXAFS spectroscopy”, Phys. Rev. B, 75, 075301 (2007)
28. V.V. Bakhmet’ev, M.M. Sychev, L.V. Khavanova, V.G. Korsakov, A.I. Kuznetsov, S.V. Myakin, and I.V. Vasil’eva, “Optimizing the electrooptic properties of phosphors for electroluminescent panels”, J. Opt. Technol., 70 513-515 (2003)
29. M. Yoshida, A. Mikami, and T. Inoguchi, “Inorganic electroluminescence materials”, in Phosphor Handbook, edited by S. Shionoya and W.M. Yen, CRC press, Boca Raton, 581-600 (1999)
30. T. Inoguchi, M. Takeda, Y. Kakihara, Y. Nakata, and M. Yoshida, in Digest, 1974 SID Int. Symp. Society for Information Display, 84 (1974)
31. E. Nakazawa, “Absorption and emission of light”, in Phosphor Handbook, edited by S. Shionoya and W.M. Yen, CRC press, Boca Raton, 13 (1999)
32. The COLOR GUIDE and Glossary, http://www.x-rite.com
33. G.A. Agoston, Color Theory and Its Application in Art and Design, Springer-Verlag, New York (1987)
34. 大田登(著)、陳鴻興、陳君彥(譯),基礎色彩再現工程(Introduction to Color Reproduction Technology),全華,臺北市,第二章 (2004)
35. S. Shionoya, “IIb-VIb compounds”, in Phosphor Handbook, edited by S. Shionoya and W.M. Yen, CRC press, Boca Raton, 233 (1999)
36. R.C. Sharma and Y.A. Chang, “Thermodynamics analysis and phase equilibria calculations for the Zn-Te, Zn-Se and Zn-S systems”, J. Grystal Growth, 88, 193-204 (1988)
37. R.C. Sharma and Y.A. Chang, “Thermodynamic analysis and phase equilibria calculations for the Cd-Te, Cd-Se, and Cd-S systems”, J. Electrochem. Soc., 136, 1536-1542 (1989)
38. W. Lehmann, “Emission spectra of impurity activated (Zn,Cd)(S,Se,Te) phosphors”, J. Electrochem. Soc., 113, 449-455 (1966)
39. V. A. Fedorov, V. A. Ganshin and Yu. N. Korkishko, “Solid-state phase diagram of the zinc sulfide-cadmium sulfide system”, Mater. Res. Bull., 28, 59-66 (1993)
40. D.J. Chakrabarti and D.E. Laughlin, in Binary Alloy Phase Diagrams, edited by T.B. Massalski, American Society of Metals, Metals Park, 953 (1986)
41. K. Okamoto and S. Kawai, “Electrical conduction and phase transition of copper sulfides”, Jpn. J. Appl. Phys. 12, 1130-1138 (1973)
42. J.Y. Leong and J.H. Yee, “Hall effect in reactively sputtered Cu2S”, Appl. Phys. Lett., 35, 601-602 (1979)
43. K.W. Böer, "The CdS/Cu2S solar cell: I. Minority carrier generation and transport in the Cu2S emitter", phys. stat. sol. (a), 40, 355-384 (1977)
44. M. Savelli and J. Bougnot, Solar Energy Conversion, Topics in Applied Physics vol. 31, edited by B.O. Seraphin, Springer, Berlin, 213 (1979)
45. L.C. Burton, "Composition measurements related to the Cu2S/ZnxCd1–xS heterojunction", Appl. Phys. Lett., 35, 780-782 (1979)
46. M.T.S. Nair and P.K. Nair, “Chemical bath deposition of CuxS thin films and their prospective large area applications”, Semicond. Sci. Technol., 4, 191-199 (1989)
47. P.K. Nair, J. Cardoso, O.G. Daza and M.T.S. Nair, “Polyethersulfone foils as stable transparent substrates for conductive copper sulfide thin film coating”, Thin Solid Films, 401, 243-250 (2001)
48. K. Terabe, T. Nakayama, T. Hasegawa, and M. Aono, “Ionic/electronic mixed conductor tip of a scanning tunneling microscope as a metal atom source for nanostructuring”, Appl. Phys. Lett., 80, 4009-4011 (2002)
49. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doan, V. Avrutin, S.J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices”,J. Appl. Phys., 98, 041301 (2005)
50. X. Gu, M. A. Reshchikov, A. Teke, D. Johnstone, H. Morkoc, B. Nemeth, and J. Nause, “GaN epitaxy on thermally treated c-plane bulk ZnO substrates with O and Zn faces”, Appl. Phys. Lett., 84, 2268-2270 (2004)
51. H. Kamimura, S. Sugano, and Y. Tanabe, Ligand Field Theory and its Applications, Syokabo, Tokyo (in Japanese), (1969)
52. S. Nara and S. Ibuki, “Electronic states and optical transition of solid crystals”, in Phosphor Handbook, edited by S. Shionoya and W.M. Yen, CRC press, Boca Raton, 30-31 (1999)
53. S. Ibuki, “Impurities and luminescence in semiconductors”, in Phosphor Handbook, edited by S. Shionoya and W.M. Yen, CRC press, Boca Raton, 55 (1999)
54. S. Tanaka, H. Kobayashi, and H. Sasakura, “Inorganic electroluminescence”, in Phosphor Handbook, edited by S. Shionoya and W.M. Yen, CRC press, Boca Raton, 602-603 (1999)
55. M. Takeda, T. Kanatani, H. Kishishita, T. Inoguchi, and K. Okano, in Proc. Soc. Information Display, 22, 57 (1981)
56. S. Tanaka, H. Kobayashi, and H. Sasakura, “Inorganic electroluminescence”, in Phosphor Handbook, edited by S. Shionoya and W.M. Yen, CRC press, Boca Raton, 137 (1999)
57. D.S. McClure, “Optical spectra of exchange coupled Mn++ ion pairs in ZnS:MnS”, J. Chem. Phys., 39, 2850-2855 (1963)
58. T. Koda, S. Shionoya, “Optical symmetry of the self-activated luminescence center in ZnS single crystal”, Phys. Rev. Lett., 11, 77-80 (1963)
59. R.E. Shrader, S. Larach, and P.N. Yocom, “Cathodoluminescence efficiency of Tm+3 in zinc sulfide”, J. Appl. Phys., 42, 4529-4530 (1971)
60. J. Cardoso, O. GomezDaza, L. Ixtlilco, M.T.S. Nair and P.K. Nair, “Conductive copper sulfide thin films on polyimide foils”, Semicond. Sci. Technol., 16, 123-127 (2001)
61. K. Yu, S. Singh, N. Patrito, and V. Chu, “Effect of reaction media on the growth and photoluminescence of colloidal CdSe nanocrystals”, Langmuir, 20,11161-11168 (2004)
62. K. Yu, B. Zaman, S. Singh, D. Wang, and J. Ripmeester, “Colloidal CdSe nanocrystals from tri-n-octylphosphine: Part I: Growth and optical properties from polar and non-polar solvents”, J. Nanosci. Nanotech. 5, 659-668 (2005)
63. K. Yu, B. Zaman, and J. Ripmeester, “Colloidal CdSe nanocrystals from tri-n-octylphosphine: Part II: Control of growth rate for high quality and large-scale production by tuning Cd-to-Se stoichiometry”, J. Nanosci. Nanotech. 5, 669-681 (2005)
64. http://www.oceanoptics.com
65. A.G. Fischer, “Electroluminescent lines in ZnS powder particles: I. Embedding media and basic observations”, J. Electrochem. Soc., 109, 1043-1049 (1962)
66. H.S. Jang, J.H.Kang, Y.H. Won, S. Lee, and D.Y. Jeon, “Mechanism for strong yellow emission of Y3Al5O12:Ce3+ phosphor under electron irradiation for the application to field emission backlight units”, Appl. Phys. Lett., 90, 071908 (2007)
67. Y. Mita, “The growth of zinc sulphide single crystals from flux” J. Phys. Soc. Jpn., 16, 1484 (1961)
68. T. Bansagi, E.A. Secco, O.K. Srivastava and R.R. Martin, “Kinetics of hexagonal-cubic transformation of zinc sulfide in vacuo, in zinc vapor, and in sulfur vapor”, Can. J. Chem. 46, 2881-2886 (1968)
69. B.D. Cullity and S.R. Stock, Elements of X-ray Diffraction, Prentice-Hall, New Jersey, 347 (2001)
70. B.L. Li, C.X. Guo , and Y.T. Wan, “Influence of doping by trace Cu or Mn in sintering process on structural transformation of ZnS electroluminescent phosphor”, Acta Physica Sinica (物理學報), 40, 490-497 (1991)
71. Y. Ono, N. Shiraga, H. Kadokura, and K. Yamada, Inst. Electron. Inform. Commun. Eng., Tech. Rep., 89, 378 (1990)
72. C.D. Hodgman, Handbook of Chemistry and Physics, Chemical Rubber, Cleveland, 1893 (1961)
73. M. Aven and J.A. Parodi, “Study of the crystalline transformation in ZnS:Cu, ZnS:Ag and ZnS:Cu,Al”, J. Phys. Chem. Solids, 13, 56-64 (1960)
74. J. Nickerson, P. Goldberg, and D.H. Baird, “The influence of copper on structural transformation in ZnS:Cu,Cl”, J. Electrochem. Soc., 110, 1228-1230 (1963)
75. M. Grus, A. J. Horodecki, A. Jankowska, A. Skowron, “On the mechanism of the copper-induced hexagonal-cubic transformation of zinc sulphide”, Cryst. Res. Technol., 16, 49-52 (1981)
76. A. Król, M.J. Kozielski, and W. Nazarewicz, Bull. Minéral. (France), 109, 81 (1986)
77. S. Shionoya, “IIb-VIb compounds”, in Phosphor Handbook, edited by S. Shionoya and W.M. Yen, CRC press, Boca Raton, 231-257 (1999)
78. E.T. Allen, J.L. Crenshaw, Am. J. Sci. 34, 341 (1912)
79. Y. Guyot, B. Champagnon, E. Reny, C. Cros, M. Pouchard, P. Melinon, A. Perez, I. Gregora, “Raman scattering of silicon clathrates”, Phys. Rev. B, 57, R9475-R9477, (1998)
80. W.G. Nilsen, “Raman spectrum of cubic ZnS”, Phys. Rev., 182, 838-850 (1969)
81. J. Serrano, A. Cantarero, M. Cardona, N. Garro, R. Lauck, R.E. Tallman, T.M. Ritter, and B.A. Weinstein, “Raman scattering in β-ZnS”, Phys. Rev. B, 69, 014301 (2004)
82. O. Brafman and S.S. Mitra, “Raman effect in wurtzite- and zinc-blende-type ZnS single crystals”, Phys. Rev., 171, 931-934 (1968)
83. J. Schneider and R.D. Kirby, “Raman scattering from ZnS polytypes”, Phys. Rev. B, 6, 1290-1294 (1972)
84. S. Jiménez-Sandoval, A. López-rivera, and J.C. Irwin, “Influence of reduced mass difference on the Raman spectra of ternary mixed compounds: Zn1-xFexS and Zn1-xMnxS”, Phys. Rev. B, 68, 054303 (2003)
85. M.S. Amer, L. Durgam, and M.M. El-Ashry, “Raman mapping of local phases and local stress fields in silicon-silicon carbide composites”, Mater. Chem. Phys., 98, 410-414 (2006)
86. Y. Kang, Y. Qiu, Zhenkun Lei, and M Hu, “An application of Raman spectroscopy on the measurement of residual stress in porous silicon”, Opt. Laser Eng., 43, 847-855 (2005)
87. Y.M. Yu, M.H. Hyun, S. Nam, D. Lee, Byungsung O, K.S. Lee, P.Y. Yu, and Y.D. Choi, “Resonant Raman scattering measurements of strains in ZnS epilayers grown on GaP”, J. Appl. Phys., 9, 9429-9431 (2002), and references cited therein.
88. F. Cerdeira, C.J. Buchenauer, F.H. Pollak, and M. Cardona, “Stress-induced shifts of first-order Raman frequencies of diamond- and zinc-blende-type semiconductors”, Phys. Rev. B, 5, 580-593 (1972)
89. D.J. Olego, K. Shahzad, J. Petruzzello, and D. Cammack, “Depth profiling of elastic strains in lattice-mismatched semiconductor heterostructures and strained-layer superlattices”, Phys. Rev. B, 36, 7674-7677 (1987)
90. M. Abdulkhadar and B. Thomas, “Study of Raman spectra of nanoparticles of CdS and ZnS”, Nanostruc. Mater., 5, 289-298 (1995)
91. J. Xu, H. Mao, and Y. Sun, “Surface vibrational mode of ZnS nanoparticles”, J. Vac. Sci. Technol. B, 15, 1465-1467 (1997)
92. X. Zhang, Y. Zhang, Y. Song, Z. Wang, and D. Yu, “Optical properties of ZnS nanowires synthesized via simple physical evaporation”, Phys. E, 28, 1-6 (2005)
93. B. Minceva-Sukarova, M. Najdoski, I. Grozdanov, and C.J. Chunnilall, “Raman spectra of thin solid films of some metal sulfides”, J. Mol. Struct., 410, 267-270 (1997)
94. S.Y. Wang, W. Wang, and Z.H. Lu, “Asynchronous-pulse ultrasonic spray pyrolysis deposition of CuxS (x=1,2) thin films”, Mater. Sci. Eng. B, 103, 184-188 (2003)
95. D.C. Frost, A. Ishitani, C.A. McDowell, “X-ray photoelectron spectroscopy of copper compounds”, Mol. Phys., 24, 861-877 (1972)
96. T.F. Mails and D. Steele, in Specimen Preparation for Transmission Electron Microscopy of Materials II, edited by R.M. Anderson, Materials Research Society, Pittsburgh, 3-42 (1990)
97. D.C. Joy, Monte Carlo Modeling for Electron Microscopy and Microanalysis, Oxford University Press, New York (1995)
98. R. F. Egerton, P. Li, and M. Malac, “Radiation damage in the TEM and SEM”, Micron, 35, 399-409 (2004)
99. L. Shi, Y. M. Xu, Quan Li, Z. Y. Wu, F. R. Chen, and J. J. Kai, “Single crystalline ZnS nanotubes and their structural degradation under electron beam irradiation”, Appl. Phys. Lett., 90, 211910 (2007)
100. V. Khomchenko, L. Fedorenko, N. Yusupov, V. Rodionov, Yu. Bacherikov, G. Svechnikov, L. Zavyalova, N. Roshchina, P. Lytvyn, and M. Mukhlio, “Laser processing and characterization of ZnS–Cu thin films”, Appl. Surf. Sci., 247, 434-439 (2005)
101. V. Klimov, P. Haring Bolivar, H. Kurz, V. Karavanskii, V. Krasovskii, Yu. Korkishko, ”Linear and nonlinear transmission of CuxS quantum dots”, Appl. Phys. Lett., 67, 653-655 (1995)
102. Y.Y. Chen, J.G. Duh, B.S. Chiou and C.G. Peng, “Luminescent mechanism of ZnS:Cu,Cl and ZnS:Cu,Al phosphors”, Thin Solid Films, 392, 50-55 (2001)
103. H. Kawai, S. kuboniwa, and T. Hoshina, “Concentration dependence of green-Cu luminescence in ZnS:Cu,Al”, Jpn. J. Appl. Phys., 13, 1593-1603 (1974)
104. W. Lehman, “Emission Spectra of Impurity Activated (Zn,Cd)(S,Se,Te) Phosphors I. Copper activated phosphors”, J. Electrochem. Soc., 113, 449-455 (1966)
105. R. Revathi, T.R.N. Kutty, “Blue a.c. electroluminescence of Zn1−xMgxS:Cu,Br powder phosphors”, J. Mater. Sci., 21, 2100-2108 (1986)
106. P. Peka and H.J. Schulz, “Empirical one-electron model of optical transitions in Cu-doped ZnS and CdS”, Phys. B, 193, 57-65 (1994)
107. M. Savelli and J. Boungnot, in Solar Energy Conversion: Solid-State Physics Aspects, edited by B. O. Seraphin, Springer, Berlin, 228 (1979)
108. L. Martinelli, E. Grilli, G. Guzzi, M.G. Grimaldi, "Room-temperature electroluminescence of ion-beam-synthesized β–FeSi2 precipitates in silicon", Appl. Phys. Lett., 83, 794-796 (2003)
109. E.D. Palik, Handbook of Optical Constants of Solids, Academic Press, San Diego, 611 (1985)
110. H.C. Swart, T.A. Trottier, J.S. Sebastian, S.L. Jones, and P.H. Holloway, “The influence of residual gas pressures on the degradation of ZnS powder phosphor”, J. Appl. Phys., 83, 4578-4583 (1998)
111. P. Pramanik, M.A. Akhter, and P.K. Basu, “Modified chemical method for the deposition of Cu1.8S thin film”, J. Mater. Sci. Lett., 6, 1277-1279 (1987)
112. I. Grozdanov, “A simple and low-cost technique for electroless deposition of chalcogenide thin films”, Semicond. Sci. Technol., 9, 1234-1241 (1994)
113. I. Grozdanov, C.K. Barlingay, S.K. Dey, M. Ristov, and M. Najdoski, “Experimental study of thee copper thiosulfate system with respect to thin-film deposition”, Thin Solis Films, 250, 67-71 (1994)
114. A.R. Denton, N.W. Ashcroft, “Vegard’s law”, Phys. Rev. A, 43, 3161-3164 (1991)
115. C.D. Hodgman, Handbook of Chemistry and Physics, Chemical Rubber, Cleveland, 1746-1747 (1961)
116. M.H. Brodsky, G. Lucovsky, M.F. Chen, T.S. Plaskett, “Infrared reflectivity spectra of the mixed crystal system Ga1-xInxSb”, Phys. Rev. B, 2, 3303-3311 (1970)
117. G. Lucovsky, E. Lind, E.A. Davis, in Proceedings of the International Conference on II-VI Semiconducting Compounds, edited by D.G. Thomas, Benjamin, New York, 1150 (1967)
118. P. Yang, M.K. Lu, G.J. Zhou, D.R. Yuan, and D. Xu, “Photoluminescence characteristic of ZnS nanocrystallites co-doped with Co2+ and Cu2+”, Inorg. Chem. Commun., 4, 734-737 (2001)
119. P. Yang, M. Lu, D. Xu, D. Yuan, and G. Zhou, “Synthesis and photoluminescence characteristics of doped ZnS nanoparticles”, Appl. Phys. A, 73, 455-458 (2001)
120. R.H. Mauch, K.O. Velthaus, H.W. Schock, S. Tanaka, H. Kobayashi, SID Digest, 178 (1992)
121. R.H. Mauch, K.O. Velthaus, B. Huttl, and H.W. Schock, SID Digest, 769(1993)
122. T. Nire, A. Matsuno, F. Wada, K. Fuchiwaki, and A. Miyakochi, SID Digest, 352 (1992)
123. K.O. Velthaus, R.H. Mauch, H.W. Schock, S. Tanaka, K. Yamada, K. Ohmi, and H. Kobayashi, in Proc. 6th Intl. Workshop on Electroluminescence, 187 (1992)
124. K. Ohmi, S. Tanaka, Y. Yamano, K. Fujimoto, H. Kobayashi, R.H. Mauch, K.O. Velthaus, and H.W. Schock, Tech. Digest of the Japan Display Conf., 725 (1992)
125. V.S. Ban, and E.A.D. White, “Mass spectrometric study of processes in the closed tube vapor growth of CdS and ZnS”, J. Crystal Growth 33, 365-368 (1976)
126. G. Frey, D. Serafin, and R. Boudreau, SID Digest, 16 (1988)
127. N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito, “Control of preferred orientation for ZnOx films: Control of self-texture”, J. Crystal Growth, 130, 269-279 (1993)
128. R. Lohmann, E. Österschulze, K. Thoma, H. Gärtner, W. Herr, B. Matthes, E. Broszeit and K.H. Kloos “Analysis of r.f.–sputtered TiB2 hard coatings by means of X-ray diffractometry and Auger electron spectroscopy”, Mater. Sci. Eng. A, 139, 259-263 (1991)
129. X.T. Zhang, Y.C. Liu, L.G. Zhang, J.Y. Zhang, Y.M. Lu, D.Z. Shen, W. Xu, G..Z. Zhong, X.W. Fan, and X.G. Kong, “Structure and optically pumped lasing from nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films”, J. Appl. Phys., 92, 3293-3298 (2002)
130. E.J. Ibanga, C. Le Luyer, and J. Mugnier, "Zinc oxide waveguide produced by thermal oxidation of chemical bath deposited zinc sulphide thin films", Mater. Chem. Phys., 80, 490-495 (2003)
131. S. Sugano, Y. Tanabe, and H. Kamimura, Multiplets of Transition-Metal Ions in Crystals, Academic, New York, 1970
132. A. Van Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, ”The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation”,J. Phys. Chem. B, 104, 1715-1723 (2000)
133. J. Han, P.Q. Mantas,and A.M.R. Senos, ”Defect chemistry and electrical characteristics of undoped and Mn-doped ZnO”, J. Eur. Ceram. Soc., 22, 49-59 (2002)
134. Y. Chen, D.M. Bagnall, H.J. Koh, K.T. Park, K. Hiraga, Z. Zhu, and T. Yao, ”Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization”, J. Appl. Phys., 84, 3912-3918 (1998)
135. K. Narisada and S. Kanaya, “Color vision”, in Phosphor Handbook, edited by S. Shionoya and W.M. Yen, CRC press, Boca Raton, 808 (1999)
136. W. Walter, “Optimum phosphor blends for fluorescent lamps”, Appl. Optics, 10, 1108-1113 (1971)
137. E. Nakazawa, “Excitation energy transfer and cooperative optical phenomena”, in Phosphor Handbook, edited by S. Shionoya and W.M. Yen, CRC press, Boca Raton, 108 (1999)
138. L. Ozawa and M. Itoh, “Cathode ray tube phosphors”, Chem. Rev., 103, 3835-3855 (2003)
139. T. Castro, R. Reifenberger, E. Choi, and R.P. Andres, “Size-dependent melting temperature of individual nanometer-sized metallic clusters”, Phys. Rev. B, 42, 8548-8556 (1990)
140. A.N. Goldstein, C. M. Echer, and A. P. Alivisatos, “Melting in semiconductor nanocrystals”, Science, 256, 1425-1427 (1992)
141. K.F. Peters, Y.W. Chung, and J.B. Cohen, “Surface melting on small particles”, Appl. Phys. Lett., 71, 2391-2393 (1997)
142. 呂宗昕,”奈米科技與光觸媒”,商周,臺北市(2003)
143. S.B. Qadri, E.F. Skelton, D. Hsu, A.D. Dinsmore, J. Yang, H. F. Gray, and B. R. Ratna, “Size-induced transition-temperature reduction in nanoparticles of ZnS”, Phys. Rev. B, 60, 9191 - 9193 (1999)
144. W.J. Huppmann, H. Riegger, W.A. Kaysser, V. Smolej, and S. Pejovnik, Z. Metallkd, 70, 707 (1979)
145. W.D. Kingery, “Densification during sintering in the presence of a liquid phase. I. Theory”, J. Appl. Phys., 30, 301-306 (1959)
146. C.B. Murrat, D.J. Norris, and M.G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites”, J. Am. Chem. Soc., 115, 8706-8715 (1993)
147. R.N. Bhargava, D. Gallagher, X. Hong, and A. Nurmikko, “Optical properties of manganese-doped nanocrystals of ZnS”, Phys. Rev. Lett., 72, 416-419 (1994)
148. M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A.P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels”, Science, 281, 2013-2016 (1998)
149. M. Abdullah, Khairurrijal, F. Iskandar, and K. Okuyama, “Semiconductor Nanoparticle-Polymer Composites”, in Nanocrystalline materials : their synthesis-structure-property relationships and applications, edited by S.C. Tjong, Amsterdam, Elsevier, 275-310 (2006)
150. M. Abdullah, T. Morimoto, K. Okuyama, “Generating blue and red luminescence from ZnO/poly(ethyleneglycol) nanocomposite prepared using an in-situ method”, Adv. Funct. Mater., 13, 800-804 (2003)
151. Y. Chan, J.P. Zimmer, M. Stroh, J.S. Steckel, R.K. Jain, and M.G. Bawendi, “Incorporation of luminescent nanocrystals into monodisperse core-shell silica microspheres”, Adv. Mater., 16, 2092-2097 (2004)
152. N. Karar, H. Chander, and S.M. Shivaprasad, “Enhancement of luminescent properties of ZnS:Mn nanophosphors by controlled ZnO capping”, Appl. Phys. Lett., 85, 5058-5060 (2004)
153. H. Li, X. Wang, Z. Gao and Z. He, “Gemini surfactant for fluorescent and stable quantum dots in aqueous solution”, Nanotechnology. 18, 205603 (2007)
154. W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range”, J. Colloid Interface Sci., 26, 62-69 (1968)
155. G. H. Bogush, M. A. Tracy, and C. F. Zukoski IV, “Preparation of monodisperse silica particles: Control of size and mass fraction”, J. Non-Cryst. Solids, 104, 95-106 (1988)
156. A. van Blaaderen, and A. Vrij, ”Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres”, Langmuir, 8, 2921-2931 (1992)
157. A. Weibel, R. Bouchet, F. Boulc’h, and P. Knauth, “The big problem of small particles: A comparison of methods for determination of particle size in nanocrystalline anatase powders”, Chem. Mater., 17, 2378-2385 (2005)
158. P. Scherrer, Gott. Nachr., 2, 98 (1918)
159. K. Schulmeister, and W. Mader, “TEM investigation on the structure of amorphous silicon monoxide”, J. Non-Cryst. Solids, 320, 143-150 (2003)
160. C.C. Ahn and D.L. Krivanek, EELS Atlas: A Reference Collection of Electron Energy Loss Spectra Covering All Stable Elements, Gatan, Warrendale (1983)
161. C. Trallero-Giner, A. Debernardi, M. Cardona, E. Menendez-Proupin, and A.I. Ekimov, “Optical vibrons in CdSe dots and dispersion relation of the bulk material”, Phys. Rev. B, 57, 4664-4669 (1998)
162. P.V. Teredesai, F.L. Deepak, A.Govindaraj, A.K. Sood, and C.N.R. Rao, “A Raman study of CdSe and ZnSe nanostructures”, J. Nanosci. Nanotech., 2, 495-498 (2002)
163. W.W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals”, Chem. Master., 15, 2854-2860 (2003)
164. J. Thessing, J. Qian, H. Chen, N. Pradhan, and X. Peng, “Interparticle influence on size/size distribution evolution of nanocrystals”, J. Am. Chem. Soc., 129, 2736-2737 (2007)
165. P.M. Fauchet and I.H. Campbell, “Raman spectroscopy of low-dimensional semiconductors”, Crit. Rev. Solid State Mater. Sci., 14, S79-S101 (1998)
166. S. Balaji, Y. Djaoued, and J. Robichaud, “Phonon confinement studies in nanocrystalline anatase-TiO2 thin films by micro Raman spectroscopy”, J. Raman Spectrosc., 37, 1416-1422 (2006)