簡易檢索 / 詳目顯示

研究生: 陳鵬宇
Chen, Peng-Yu
論文名稱: H∞模糊滑動控制器之設計研究
The synthesized design of H∞ fuzzy sliding-mode controller
指導教授: 黃正能
Hwang, Cheng-Neng
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 119
中文關鍵詞: H∞控制模糊控制滑動控制迴授線性化
外文關鍵詞: H∞, Sliding-mode, fuzzy, feedback linearization
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大部分的非線性系統,含有參數不確定與干擾問題,此易造成系統輸出惡化、性能變差,也可能造成系統不穩定。為解決此問題,本文提出了H_∞模糊滑動的綜合控制法。
    在本文之綜合控制器中的模糊控制項,主要由本文以滑動面及滑動面的導數為輸入之模糊規則表中所得。而滑動控制項,依照Lyapunov穩定理論來確保系統的漸近穩定,並配合前述之模糊控制項來滿足系統預設規格。不用傳統的試誤法,在本文中的滑動控制參數,係由將系統的誤差方程式轉化為H_∞標準控制問題,而由求解黎卡迪方程式(Riccati equation)而得。因此,本文控制器之控制增益可將外界輸入(例如系統的干擾或不確定性)到系統的受控輸出(追蹤誤差、控制能量)之轉移函數的H_∞-norm壓縮到最低。進而為移除滑動控制項的Chattering現象,本文將控制器中sgn函數轉換成飽和函數(sat)。此後,再利用本文所提出之不等式來確保含有未模式化不確定系統的穩定性。
    最後本文使用含有不確定項跟干擾的機械手臂來做電腦模擬,並追蹤預設之路徑,電腦模擬結果顯示,此控制器已被最佳化處理,而且系統的預設性能皆能圓滿達成。

    Most of nonlinear systems encounter the problems of system parameter variation, plant uncertainties and disturbances, which are likely to cause deterioration of the output response and degrade system performance as well as even result in system instability. For solving this problem, the H_∞ fuzzy sliding-mode controller is proposed in this research. The Fuzzy control term in the proposed composite controller is mainly determined by the sliding surface and its derivative by following the fuzzy control rules listed in the attached table. The sliding-mode control term is constructed in the proposed controller to ensure the system asymptotically stability in the sense of Lyapunov while keeping the system response be well shaped to match the desired specifications by the previous fuzzy control term. Instead of the traditional trial and error process, the control parameters of the designed sliding surfaces in this paper are optimally obtained by solving Algebraic Riccati Equation in formulating the system error equation into the standard H_∞-optimal control problem. Thus, the control gains in this paper are optimally selected to minimize the ill-effect of the exogenous inputs (e.g. disturbance and plant uncertainties) on the controlled output (e.g. tracking error and energy cost). Moreover, to remove the undesirable chattering in the sliding-mode component, the sign function is replaced by the saturation function. Moreover, the un-modeled dynamics remained in the closed-loop system is then checked by the inequality proposed in this paper to guarantee the system absolute stability. Finally this paper uses a submarine with plant uncertainties which is controlled and simulated by the proposed composite controller to track a pre-specified desired path.

    摘要 I Extended Abstract II 誌謝 V 目錄 VI 圖目錄 VIII 表目錄 X 第一章 緒論 1 1.1研究動機 1 1.2文獻回顧 2 1.3論文架構 3 第二章 滑動控制理論 5 2.1前言 5 2.2滑動控制理論 5 2.3控制系統描述 6 2.4滑動控制器設計 10 2.5滑動控制器的強健性 12 第三章 模糊理論 15 3.1前言 15 3.2模糊控制理論 15 3.2.1 Fuzzy理論的基本精神 15 3.2.2 Fuzzy集合的定義 16 3.2.3 歸屬函數 17 3.3基本模糊控制器 18 3.4 解模糊化機構 21 第四章 H_∞強健控制理論 23 4.1前言 23 4.2範數的定義 23 4.2.1以範數量度訊號的大小 24 4.2.2以範數量度系統的大小 24 4.3 H_∞基本理論 25 4.4 H_∞控制問題探討 26 4.4.1 擴增系統矩陣 26 4.4.2 狀態回授控制器 29 4.4.3 狀態觀測器 31 4.4.4 Scaling問題 32 4.5 求解H_∞控制問題流程 35 第五章 H_∞模糊滑動控制器之設計 36 5.1系統描述 36 5.2滑動控制器設計 37 5-3模糊控制描述 40 5-4 H_∞模糊滑動綜合控制器設計 44 5-4.1具參數不確定性及擾動之系統控制補償器設計 47 理論I 55 理論II 58 5.5 控制器設計步驟與流程圖 62 第六章 電腦模擬 64 6.1系統描述 64 6.1.1機械手臂系統描述 64 6.1.2機械臂目標軌跡 66 6.1.3設計步驟 69 6.2 系統描述 90 6.2.1 潛艦系統描述 90 6.2.2 模擬步驟 95 第七章 結論 116 參考文獻 117

    [1] Babaoglu, O.K. “Designing an automatic control system for a submarine,” M.S. thesis, Naval Postgraduate School, Monterey, California, 1988.

    [2] C.N. Hwang, “Tracking of controllers for robot manipulators,” Master Dissertation, Michigan state University, 1986.

    [3] C.N. Hwang, “Design of Robust Controllers for Manipulators,” Journal of the National Cheng-Kung University, vol.26. , Sci. Eng. & Med. Section, pp. 213-234, 1991.

    [4] C.N. Hwang, “Synthesis Procedure for Nonlinear Systems,” Proc. Natl. Sci. Counc. ROC(A) Vol. 17 ,No. 4,. pp. 279-294 , 1993.

    [5] C.N. Hwang, “Formulation of H2 and H∞ Optimal Control Problems – A Variational Approach,” Journal of the Chinese Institute of Engineering’s, Vol. 16, No. 6, pp.853-866, 1993.

    [6] C.N. Hwang, “A Variational Approach to H_2 and H_∞ Optimal Control Problems for Linear Nonautonomous System,” Proc. Natl. Sci. Counc. ROC(A) vol. 17, NO. 6, pp. 853-866, 1993.

    [7] Chung-Chun Kung and Chia-Chang Liao “Fuzzy-Sliding Mode Controller Design For Tracking Control Of Non-Linear System,” Proceadings of the American Control Conference Baltimore, Maryland, vol. 1, pp. 180-184, July 1994.

    [8] C.S. Shieh and Ming-Rong Lee, “A study of a robust fuzzy controller for perturbed nonlinear systems,” Circuit System Signal Processing, Vol. 25, No. 6,,pp. 715-727, 2006.

    [9] Doyle, J.C., Glover, K. Khargonekar, P.P. and Francis, B.A., “State-Space Solutions to Standard H2 and H∞ Control Problems,” IEEE Transactions on Automatic Control, Vol. 34, No.8, pp.831-847, 1989.

    [10] D. Dumlu and Y. Istefanopulos, “Design of an adaptive controller for submersibles via multimodel gain scheduling,” Ocean Engng, vol. 22, No. 6, pp. 593-614, 1995.

    [11] Jun Yang ; Shihua Li ; Xinghuo Yu, “Sliding-mode control for systems with mismatched uncertainties via a disturbance observer,” IEEE Transactions on electronics, Vol. 60, NO. 1, pp. 160-169, January 2013.

    [12] J. Shi, H. Liu and N. Bajcinca, “Robust control of robotic manipulators based on integral sliding mode,” International Journal of Control
    Vol. 81, No. 10, pp. 1537–1548, October 2008.

    [13] Mamdani, E.H., “Application of fuzzy algorithms for control of
    simple dynamic plant ,” PROC. IEE, Vol. 121, No. 12, pp. 1585-1588, 1974.

    [14] R. J. Richards, and D. P. Stoten, “Depth Control of A Submersible Vehicle,” Int. Shipbuilding Progress, Vol. 28, pp. 30-39, Feb. 1981.

    [15] Utkin, V.I., “Sliding Modes in Control and Optimization,” London, UK: Springer-Verlag. (1992)

    [16] Utkin, V.I., Jingxin Shi. “Integral Sliding Mode in Systems Operating under Uncertainty Conditions,” Proceedings of the 35th IEEE Conference on Decision and Control, vol. 4, pp. 4591-4596, 1996.

    [17] Utkin, V.I. and Hao-Chi Chang “Sliding Mode Control on Electro-Mechanical Systems,” Mathematical Problems in Engineering, Vol. 8(4-5), pp. 451-473, 2002.

    [18] Zames, G., Francis, B.A., “A new approach to classical frequency methods : Feedback and minimax sensitivity,” 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, pp. 867-874, 1981.

    [19] Zadeh, L. A.,“Fuzzy sets,” Information Contr., vol. 8, pp. 338-353, 1965.
    [20] 楊憲東、葉芳柏,“線性與非線性H_∞控制理論”,全華科技圖書股份有限公司,1997。

    [21] 楊憲東,“非線性控制講義”,國立成功大學航太系,2011。

    [22] 李祖聖,“高等模糊控制講義”, 國立成功大學電機系。

    [23] 李允中、王小璠、蘇木春,“模糊理論及其應用”,全華科技圖書股份有限公司,2003。

    [24] 孫宗瀛、楊英魁,“Fuzzy 控制:理論、實作與應用”,全華科技圖書股份有限公司,2005。

    [25] 蘇義閎、黃正能,“H_∞-模糊滑動複合控制設計與其在水下載具上之應用”,國立成功大學系統及船舶機電工程研究所碩士論文,2010。

    [26] 彭宇煊、黃正能,“機械臂之H_∞-滑動控制設計”, 國立成功大學系統及船舶機電工程研究所碩士論文,2013。

    無法下載圖示 校內:2019-08-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE