| 研究生: |
蒙莉安 Lesly Ann Pauline Manaoat |
|---|---|
| 論文名稱: |
以尼羅紅法分析台灣自來水廠中的塑膠微粒 Analyzing microplastics in drinking water treatment plants (DWTPs) in Taiwan using the Nile Red method |
| 指導教授: |
林財富
Lin, Tsair-Fuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 塑膠微粒 、尼羅紅法 、自來水廠 、過氧化氫 、次氯酸鈉 |
| 外文關鍵詞: | Microplastics, Nile Red , DWTP, Hydrogen peroxide, Sodium hypochlorite |
| 相關次數: | 點閱:52 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
塑膠微粒是廣泛存在於不同基中的有毒物質,需要先更精確掌握檢測和計數方法,才能進一步減少及防止其散佈至環境中,故了解哪種基質能幫助辨別自來水廠中的塑膠微粒是相當重要的一環。本研究旨在研究尼羅紅 (Nile Red) 染料在塑膠微粒分析中的適用性,以及建立過濾樣品的最佳化條件,並減少有機物和樣品染色後對檢測的影響。研究結果顯示,經聚碳酸酯蝕刻濾膜過濾並使用5 mg/L溶解於正己烷的尼羅紅染色後,能夠在460-495 nm的波長下輕易辨別出塑膠微粒,10µm 和 150 µm的塑膠微粒樣品回收率分別為 93% 和 85%。在樣品中添加10 mg/L 次氯酸鈉3小時和 25% 過氧化氫 21小時組合的前處理能有效降低樣品中有機物質和螢光物質的干擾。本研究同時將建立的樣品處理方法和檢測方法應用於台灣的三個自來水廠中,並在三個水廠的原水及清水中均發現塑膠微粒的存在,濃度分別為 165-195 和 100-150 個塑膠微粒/升。 清水中的塑膠微粒主要的尺寸範圍為1-10 μm 和 10-50 μm,其中51-64% 呈碎片狀。本研究中所建立的方法可做為未來監測塑膠微粒之參考。此外,在自來水廠中檢測到的塑膠微粒濃度亦顯示台灣的自來水廠需要進行全面性的詳細監測和研究。
Microplastics (MP) are toxic materials found in different substances, and environmental engineers need to have a proper grasp of microplastic count and exploration, to know how to lessen and prevent their proliferation. This became a preliminary catalyst for the pursuit of this study, to check what medium could help identify microplastics easily, with the main goal of detecting microplastics in Drinking Water Treatment Plants (DWTPs). Hence, this study is aimed to investigate the applicability of the Nile Red (NR) dye for microplastic analysis, to establish the optimal conditions for membrane types for sample filtration, and reduction of the effect of organic matters and sample staining for detection. Experimental results indicated that in the samples filtrated by polycarbonate track-etch membrane and stained with 5 mg/L of NR dissolved with n-hexane, MPs were easily recognizable when viewed under the excitation wavelength of 460-495nm. The recovery of MPs in the samples was at 92.96% and 84.57% for the sizes of 10 and 150 µm respectively. The samples pretreated with 10 mg/L NaOCl for 3 hrs and 25% H2O2 for 21 hrs showed a 92.07% decrease in organic material compared to an 89.07% reduction using only 25% H2O2 for 24 hrs. The Raman spectroscopy analysis of Cheng Kung Lake waster samples further confirmed that the combination of NaOCl and H2O2 treatment effectively reduced the fluorescent interference on MP detection caused by the non-MP presence in the samples. The developed sample treatment and detection method was applied in the measurement of MPs in three DWTPs in Taiwan. MPs were found in both raw and finished water in three DWTPs, with a total number of 165-195 and 100-150 microplastic particles, respectively. The microplastics present in the finished water samples were dominated by the size ranges of 1-10 and 10-50 μm and with 51-64% of particles being fragmented shape. The method developed in this study may serve as a reference if MPs are to be detected in DWTP. In addition, the MP concentration detected in DWTPs suggested that a further larger scale and more detailed monitoring study is needed for Taiwan's DWTPs.
In addition, the MP concentration detected in DWTPs suggested that a further larger scale and more detailed monitoring study is needed for Taiwan’s DWTPs
Al-azzawi, M. S. M., Kefer, S., Weißer, J., Reichel, J., Glas, K., Knoop, O., … Drewes, J. E. (2020). Validation of Sample Preparation Methods for Microplastic Analysis in Wastewater. Water, 12(9), 2445. Retrieved from https://doi.org/10.3390/w12092445
Anderson, P. J., Warrack, S., Langen, V., Challis, J. K., Hanson, M. L., & Rennie, M. D. (2017). Microplastic contamination in Lake Winnipeg, Canada. Environmental Pollution, 225, 223–231. https://doi.org/10.1016/j.envpol.2017.02.072
Babel, S., & Dork, H. (2021). Identification of micro-plastic contamination in drinking water treatment plants in Phnom Penh, Cambodia. Journal of Engineering and Technological Sciences, 53(3). https://doi.org/10.5614/j.eng.technol.sci.2021.53.3.7
Chen, J. Y. S., Lee, Y. C., & Walther, B. A. (2020). Microplastic contamination of three commonly consumed seafood species from Taiwan: A pilot study. Sustainability (Switzerland), 12(22), 1–13. https://doi.org/10.3390/su12229543
Chen, Y., Wen, D., Pei, J., Fei, Y., Ouyang, D., Zhang, H., & Luo, Y. (2020). Identification and quantification of microplastics using Fourier-transform infrared spectroscopy: Current status and future prospects. Current Opinion in Environmental Science and Health, 18, 14–19. https://doi.org/10.1016/j.coesh.2020.05.004
Claessens, M., Van Cauwenberghe, L., Vandegehuchte, M. B., & Janssen, C. R. (2013). New techniques for the detection of microplastics in sediments and field collected organisms. Marine Pollution Bulletin, 70(1–2), 227–233. https://doi.org/10.1016/j.marpolbul.2013.03.009
Dalmau-Soler, J., Ballesteros-Cano, R., Boleda, M. R., Paraira, M., Ferrer, N., & Lacorte, S. (2021). Microplastics from headwaters to tap water: occurrence and removal in a drinking water treatment plant in Barcelona Metropolitan area (Catalonia, NE Spain). Environmental Science and Pollution Research, 28(42), 59462–59472. https://doi.org/10.1007/s11356-021-13220-1
Dehaut, A., Cassone, A. L., Frère, L., Hermabessiere, L., Himber, C., Rinnert, E., … Paul-Pont, I. (2016). Microplastics in seafood: Benchmark protocol for their extraction and characterization. Environmental Pollution, 215, 223–233. https://doi.org/10.1016/j.envpol.2016.05.018
Erni-Cassola, G., Gibson, M. I., Thompson, R. C., & Christie-Oleza, J. A. (2017). Lost, but Found with Nile Red: A Novel Method for Detecting and Quantifying Small Microplastics (1 mm to 20 μm) in Environmental Samples. Environmental Science and Technology, 51(23), 13641–13648. https://doi.org/10.1021/acs.est.7b04512
Gigault, J., Halle, A. ter, Baudrimont, M., Pascal, P. Y., Gauffre, F., Phi, T. L., … Reynaud, S. (2018). Current opinion: What is a nanoplastic? Environmental Pollution, 235, 1030–1034. https://doi.org/10.1016/j.envpol.2018.01.024
Hurley, R. R., Lusher, A. L., Olsen, M., & Nizzetto, L. (2018). Validation of a Method for Extracting Microplastics from Complex, Organic-Rich, Environmental Matrices. Environmental Science and Technology, 52(13), 7409–7417. https://doi.org/10.1021/acs.est.8b01517
Kang, H., Park, S., Lee, B., Ahn, J., & Kim, S. (2020). Modification of a nile red staining method for microplastics analysis: A nile red plate method. Water (Switzerland), 12(11), 1–12. https://doi.org/10.3390/w12113251
Kankanige, D., & Babel, S. (2021). Contamination by ≥6.5 μm-sized microplastics and their removability in a conventional water treatment plant (WTP) in Thailand. Journal of Water Process Engineering, 40(November 2020), 101765. https://doi.org/10.1016/j.jwpe.2020.101765
Klein, M., & Fischer, E. K. (2019). Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg, Germany. Science of the Total Environment, 685, 96–103. https://doi.org/10.1016/j.scitotenv.2019.05.405
Maes, T., Jessop, R., Wellner, N., Haupt, K., & Mayes, A. G. (2017). A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Scientific Reports, 7(March), 1–10. https://doi.org/10.1038/srep44501
Masura, J., Baker, J., Foster, G., & Arthur, C. (2015). Laboratory Methods for the Analysis of Microplastics in the Marine Environment. NOAA Marine Debris Program National, (July), 1–39. Retrieved from https://marinedebris.noaa.gov/sites/default/files/publications-files/noaa_microplastics_methods_manual.pdf
Meyers, N., Catarino, A. I., Declercq, A. M., Brenan, A., Devriese, L., Vandegehuchte, M., … Everaert, G. (2022). Microplastic detection and identification by Nile red staining: Towards a semi-automated, cost- and time-effective technique. Science of the Total Environment, 823, 153441. https://doi.org/10.1016/j.scitotenv.2022.153441
Mintenig, S. M., Löder, M. G. J., Primpke, S., & Gerdts, G. (2019). Low numbers of microplastics detected in drinking water from ground water sources. Science of the Total Environment, 648, 631–635. https://doi.org/10.1016/j.scitotenv.2018.08.178
Nel, H. A., Chetwynd, A. J., Kelleher, L., Lynch, I., Mansfield, I., Margenat, H., … Krause, S. (2021). Detection limits are central to improve reporting standards when using Nile red for microplastic quantification. Chemosphere, 263. https://doi.org/10.1016/j.chemosphere.2020.127953
Novotna, K., Cermakova, L., Pivokonska, L., Cajthaml, T., & Pivokonsky, M. (2019). Microplastics in drinking water treatment – Current knowledge and research needs. Science of the Total Environment, 667, 730–740. https://doi.org/10.1016/j.scitotenv.2019.02.431
Patchaiyappan, A., Dowarah, K., Zaki Ahmed, S., Prabakaran, M., Jayakumar, S., Thirunavukkarasu, C., & Devipriya, S. P. (2021). Prevalence and characteristics of microplastics present in the street dust collected from Chennai metropolitan city, India. Chemosphere, 269, 128757. https://doi.org/10.1016/j.chemosphere.2020.128757
Pfeiffer, F., & Fischer, E. K. (2020). Various Digestion Protocols Within Microplastic Sample Processing—Evaluating the Resistance of Different Synthetic Polymers and the Efficiency of Biogenic Organic Matter Destruction. Frontiers in Environmental Science, 8(December), 1–9. https://doi.org/10.3389/fenvs.2020.572424
Pivokonsky, M., Cermakova, L., Novotna, K., Peer, P., Cajthaml, T., & Janda, V. (2018). Occurrence of microplastics in raw and treated drinking water. Science of the Total Environment, 643, 1644–1651. https://doi.org/10.1016/j.scitotenv.2018.08.102
Prata, J. C., Alves, J. R., da Costa, J. P., Duarte, A. C., & Rocha-Santos, T. (2020). Major factors influencing the quantification of Nile Red stained microplastics and improved automatic quantification (MP-VAT 2.0). Science of the Total Environment, 719. https://doi.org/10.1016/j.scitotenv.2020.137498
Prata, J. C., da Costa, J. P., Girão, A. V., Lopes, I., Duarte, A. C., & Rocha-Santos, T. (2019). Identifying a quick and efficient method of removing organic matter without damaging microplastic samples. Science of the Total Environment, 686, 131–139. https://doi.org/10.1016/j.scitotenv.2019.05.456
Prata, J. C., Godoy, V., da Costa, J. P., Calero, M., Martín-Lara, M. A., Duarte, A. C., & Rocha-Santos, T. (2021). Microplastics and fibers from three areas under different anthropogenic pressures in Douro river. Science of the Total Environment, 776, 145999. https://doi.org/10.1016/j.scitotenv.2021.145999
Prata, J. C., Manana, M. J., Duarte, A. C., & Rocha-santos, T. (2020). What Is the Minimum Volume of Sample to Find Sampling of Aveiro Lagoon and Vouga River , Portugal. Water, 12(1219), 1–10.
Prata, J. C., Reis, V., Matos, J. T. V., da Costa, J. P., Duarte, A. C., & Rocha-Santos, T. (2019). A new approach for routine quantification of microplastics using Nile Red and automated software (MP-VAT). Science of the Total Environment, 690, 1277–1283. https://doi.org/10.1016/j.scitotenv.2019.07.060
Prata, J. C., Sequeira, I. F., Monteiro, S. S., Silva, A. L. P., da Costa, J. P., Dias-Pereira, P., … Rocha-Santos, T. (2021). Preparation of biological samples for microplastic identification by Nile Red. Science of the Total Environment, 783, 147065. https://doi.org/10.1016/j.scitotenv.2021.147065
Sarkar, D. J., Das Sarkar, S., Das, B. K., Praharaj, J. K., Mahajan, D. K., Purokait, B., … Samanta, S. (2021). Microplastics removal efficiency of drinking water treatment plant with pulse clarifier. Journal of Hazardous Materials, 413(November 2020), 125347. https://doi.org/10.1016/j.jhazmat.2021.125347
Schrank, I., Möller, J. N., Imhof, H. K., Hauenstein, O., Zielke, F., Agarwal, S., … Laforsch, C. (2022). Microplastic sample purification methods - Assessing detrimental effects of purification procedures on specific plastic types. Science of the Total Environment, 833(November 2021). https://doi.org/10.1016/j.scitotenv.2022.154824
Schymanski, D., Goldbeck, C., Humpf, H. U., & Fürst, P. (2018). Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water. Water Research, 129, 154–162. https://doi.org/10.1016/j.watres.2017.11.011
Shen, M., Zeng, Z., Wen, X., Ren, X., Zeng, G., Zhang, Y., & Xiao, R. (2021). Presence of microplastics in drinking water from freshwater sources: the investigation in Changsha, China. Environmental Science and Pollution Research, 28(31), 42313–42324. https://doi.org/10.1007/s11356-021-13769-x
Shim, W. J., Song, Y. K., Hong, S. H., & Jang, M. (2016). Identification and quantification of microplastics using Nile Red staining. Marine Pollution Bulletin, 113(1–2), 469–476. https://doi.org/10.1016/j.marpolbul.2016.10.049
Shruti, V. C., Pérez-Guevara, F., Roy, P. D., & Kutralam-Muniasamy, G. (2022). Analyzing microplastics with Nile Red: Emerging trends, challenges, and prospects. Journal of Hazardous Materials, 423(September 2021). https://doi.org/10.1016/j.jhazmat.2021.127171
Sol, D., Laca, A., Laca, A., & Díaz, M. (2021). Microplastics in wastewater and drinking water treatment plants: Occurrence and removal of microfibres. Applied Sciences (Switzerland), 11(21). https://doi.org/10.3390/app112110109
Stanton, T., Johnson, M., Nathanail, P., Gomes, R. L., Needham, T., & Burson, A. (2019). Exploring the Efficacy of Nile Red in Microplastic Quantification: A Costaining Approach. Environmental Science and Technology Letters, 6(10), 606–611. https://doi.org/10.1021/acs.estlett.9b00499
Stanton, T., Johnson, M., Nathanail, P., Gomes, R. L., Needham, T., & Burson, A. (2019). Exploring the Efficacy of Nile Red in Microplastic Quantification: A Costaining Approach. Environmental Science and Technology Letters, 6(10), 606–611. https://doi.org/10.1021/acs.estlett.9b00499
Sturm, M. T., Horn, H., & Schuhen, K. (2021). Removal of microplastics from waters through agglomeration-fixation using organosilanes—effects of polymer types, water composition, and temperature. Water (Switzerland), 13(5), 1–15. https://doi.org/10.3390/w13050675
Tagg, A. S., Harrison, J. P., Ju-Nam, Y., Sapp, M., Bradley, E. L., Sinclair, C. J., & Ojeda, J. J. (2017). Fenton’s reagent for the rapid and efficient isolation of microplastics from wastewater. Chemical Communications, 53(2), 372–375. https://doi.org/10.1039/c6cc08798a
Tamminga, M. (2017). Nile Red Staining as a Subsidiary Method for Microplastic Quantification: A Comparison of Three Solvents and Factors Influencing Application Reliability. SDRP Journal of Earth Sciences & Environmental Studies, 2(2). https://doi.org/10.15436/jeses.2.2.1
Tong, H., Jiang, Q., Hu, X., & Zhong, X. (2020). Occurrence and identification of microplastics in tap water from China. Chemosphere, 252, 126493. https://doi.org/10.1016/j.chemosphere.2020.126493
Wang, C., Jiang, L., Liu, R., He, M., Cui, X., & Wang, C. (2021). Comprehensive assessment of factors influencing Nile red staining: Eliciting solutions for efficient microplastics analysis. Marine Pollution Bulletin, 171(June), 112698. https://doi.org/10.1016/j.marpolbul.2021.112698
Wang, Z., Lin, T., & Chen, W. (2020). Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP). Science of the Total Environment, 700, 134520. https://doi.org/10.1016/j.scitotenv.2019.134520
Way, C., Hudson, M. D., Williams, I. D., & Langley, G. J. (2022). Evidence of underestimation in microplastic research: A meta-analysis of recovery rate studies. Science of the Total Environment, 805, 150227. https://doi.org/10.1016/j.scitotenv.2021.150227