簡易檢索 / 詳目顯示

研究生: 劉三賢
Liu, San-Hsien
論文名稱: 應用於W-Band CMOS射頻前端收發機之47-及94-GHz毫米波壓控振盪器晶片研製
Research on 47- and 94-GHz Millimeter-Wave Voltage Controlled Oscillators for W-Band CMOS RF Front-End
指導教授: 張志文
Chang, Chih-Wen
共同指導教授: 黃尊禧
Huang, Tzuen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 60
中文關鍵詞: 47-GHz94-GHzCMOS低功耗壓控振盪器
外文關鍵詞: 47-GHz, 94-GHz, CMOS, Low power consumption, VCO
相關次數: 點閱:117下載:30
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研製47-GHz低功率消耗之電流再利用型壓控振盪器、94-GHz考畢子壓控振盪器,振盪器採用TSMC 90-nm CMOS製程製作,47-GHz電流再利用型壓控振盪器採用電流再利用技術,以減少功耗,使用自發轉導匹配技術動態地平衡交互耦合電晶體對的轉導值,改善輸出振幅不平衡的現象。並且在交互耦合電晶體對加入旁路電容減緩源極退化的效應,進一步降低功耗。94-GHz考畢子壓控振盪器設計分為兩個階段,第一階段設計47-GHz差動考畢子壓控振盪器,採用汲極至源極回授,偏壓電流透過交互耦合電晶體對實現,可同時提供正回授以提升整體的迴路增益。透過基極偏壓技巧減少電晶體的臨界電壓,振盪器訊號經由回授電容給予基極偏壓,提升電晶體的轉導值,亦加快電流切換電晶體的切換速度,達到較佳的相位雜訊,有效提升主動電路所提供的負轉導,克服考畢子振盪器嚴苛的起振條件。加入PMOS交互耦合電晶體對可再提升整體負轉導以及輸出振幅,亦同時給予緩衝器偏壓。第二階段設計94-GHz考畢子壓控振盪器,倍頻器採用轉導提升雙推式架構,倍頻器輸出電流的二倍頻項大小由訊號振幅決定,不會被輸出端的高阻抗給抑制,能產生大輸出電壓擺幅去驅動下一級電路。由於振盪器輸出端為倍頻器的共模點,後級電路不會造成差動考畢子振盪器的負載效應,予以加入放大器提升振盪器輸出功率。此倍頻器的電流將再利用於考畢子振盪器,使用電流再利用技巧降低考畢子振盪器的功耗。晶片電路設計皆以Agilent ADS及全波電磁模擬軟體進行模擬,量測皆採用on-wafer方式進行。

    This thesis presents a 47-GHz low power current-reuse VCO and a 94-GHz Colpitts VCO which are implemented in a 90-nm CMOS process. The low power design can be achieved by current-reuse technique in the 47-GHz VCO. To improve the imbalance amplitude due to the asymmetric structure, the transconductances of the cross-coupled pair are dynamically equal to each other with spontaneous transconductance match (STM) technique. In addition, the source degeneration effect can be alleviated by adding bypassed capacitor. In the first part, the 94-GHz Colpitts VCO design is divided into two parts. A 47-GHz differential drain-to-source feedback Colpitts VCO core biased by current switching transistors provides positive feedback to increase loop gain in the first part. The threshold voltage of transistors could be reduced by forward body biasing technique. Due to this technique provided by capacitive divider, the transconductance of transistors can be boosted and the phase noise of oscillator can also be improved by quick transition of current switching transistor between on and off states. The stringent start-up condition would be overcame by effectively boosting negative conductance of active circuit. Furthermore, the PMOS cross-coupled pair which biases the buffer stages increases the overall of negative conductance and output amplitudes. The second part presents a 94-GHz Colpitts VCO with the gm-boosted doubler. The second-harmonic current amplitude determined by input signal amplitude would not be suppressed by high impedance of the output and could generate a large swing to drive the next circuit. Since the doubler output is the common-mode node of oscillator output, the additional amplifiers increase the output power without loading oscillator. The current of the doubler is reused by the Colpitts VCO topology. This current-reuse technique lowers power consumption of oscillator. These chips are measured using on-wafer probing.

    第一章 緒論 1 1.1研究動機與背景 1 1.2文獻回顧 2 1.3論文架構 4 第二章 47-GHz CMOS電流再利用型壓控振盪器 5 2.1研究動機介紹 5 2.2壓控振盪器重要參數 6 2.2.1可調頻寬 6 2.2.2相位雜訊 7 2.2.3輸出功率 9 2.3 47-GHz低功耗壓控振盪器設計 10 2.3.1架構選擇 10 2.3.2電路設計與考量 10 2.3.3設計流程 13 2.3.4模擬與量測結果 17 2.4結果與討論 21 第三章 94-GHz CMOS考畢子壓控振盪器 23 3.1研究動機介紹 23 3.2 47-GHz CMOS考畢子壓控振盪器 25 3.2.1架構選擇 25 3.2.2電路設計與考量 26 3.2.3設計流程 30 3.2.4模擬與量測結果 33 3.2.5結果與討論 36 3.3 94-GHz考畢子壓控振盪器設計 38 3.3.1架構選擇 38 3.3.2電路設計與考量 39 3.3.3設計流程 42 3.3.4模擬與量測結果 45 3.4結果與討論 50 第四章 結論 55 參考文獻 57

    [1] T. S. Rappaport, J. N. Murdock, and F. Gutierrez, "State of the Art in 60-GHz Integrated Circuits and Systems for Wireless Communications," Proceedings of the IEEE, vol. 99, no. 8, pp. 1390-1436, Aug. 2011.
    [2] S. S. Ahmed, A. Schiessl, F. Gumbmann, M. Tiebout, S. Methfessel, and L. Schmidt, “Advanced microwave imaging,” IEEE Microwave Magazine, vol. 13, no. 6, pp. 26-43, Sep. 2012.
    [3] A. Arbabian, S. Callender, S. Kang, B. Afshar, J.-C. Chien, and A. Niknejad, “A 90 GHz hybrid switching pulsed-transmitter for medical imaging,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2667–2681, Dec. 2010.
    [4] A. Arbabian, S. Callender, S. Kang, M. Rangwala, and A. Niknejad, “A 94 GHz mm-wave-to-baseband pulsed-radar transceiver with applications in imaging and gesture recognition” IEEE J. Solid-State Circuit, vol. 48, no. 4, pp. 1055-1071, Apr. 2013.
    [5] S. T. Nicolcon, A. Tomkins, K. -W. Tang, A. Cathelin, D. Belot, S. P. Voinigescu, “A 1.2 V, 140 GHz receiver with on-die antenna in 65 nm CMOS,” in IEEE RFIC Symp. Dig., pp.229-232, Jun.2008.
    [6] S. Wang, “A low-phase-noise ka-band push-push voltage-controlled oscillator using CMOS/ glass-integrated passive device technologies, ” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 61, no. 9, pp. 1456-1462, Sept. 2014.
    [7] S. -J. Yun, S. -B. Shin, H. -C. Choi, and S. -G. Lee, “A 1 mW current-reuse CMOS differential LC-VCO with low phase noise,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., pp. 540-616, Feb. 2005.
    [8] C. Yang and Y. Chiang, “Low Phase-Noise and Low-Power CMOS VCO Constructed in Current-Reused Configuration,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 2, pp. 136-138, Feb. 2008.
    [9] M. Wei, S. Chang and S. Huang, “An Amplitude-Balanced Current-Reused CMOS VCO Using Spontaneous Transconductance Match Technique,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 6, pp. 395-397, June 2009.
    [10] M. Wei, S. Chang, S. Huang, Y. Yang and R. Negra, “Investigation of Sub-Milliwatt Current-Reuse VCOs With Mono-Spontaneous Transconductance Match Technique,” IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 2, pp. 332-340, Feb. 2014.
    [11] K. -C. Kwok and H. C. Luong, “Ultra-low-voltage high-performance CMOS VCOs using transformer feedback,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 652–660, Mar. 2005.
    [12] H. -Y Chang and Y. -T Chiu, “K-band CMOS differential and quadrature voltage-controlled oscillators for low phase-noise and low-power applications,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 46-59, Jan. 2012.
    [13] T. -P. Wang, “A CMOS Colpitts VCO using negative-conductance boosted technology,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 11, pp. 2623-2635, Nov. 2011.
    [14] H. Hsieh and L. Lu, “A High-Performance CMOS Voltage-Controlled Oscillator for Ultra-Low-Voltage Operations,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 3, pp. 467-473, March 2007.
    [15] R. Aparicio and A. Hajimiri, “A noise-shifting differential Colpitts VCO,” IEEE Journal of Solid-State Circuits, vol. 37, no. 12, pp. 1728-1736, Dec. 2002.
    [16] X. Li, S. Shekhar, and D. J. Allstot, “Gm-boosted common-gate LNA and differential Colpitts VCO/QVCO in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2609–2619, Dec. 2005.
    [17] J. -P. Hong and S. -G. Lee, “Low phase noise Gm-boosted differential gate-to-source feedback Colpitts CMOS VCO,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3079–3091, 2009.
    [18] J. Hong and S. Lee, “Gm-Boosted Differential Drain-to-Source Feedback Colpitts CMOS VCO,” IEEE Microw. Wireless Compon. Lett., vol. 59, no. 7, pp. 1811-1821, July 2011.
    [19] R. -C. Liu, H. -Y. Chang, C. -H. Wang and H. Wang, “A 63 GHz VCO using a standard 0.25-μm CMOS process,” IEEE Int. Solid-State Circuits Conf., pp. 446-447, Sept. 2004.
    [20] P. -C. Huang, M. -D. Tsai, H. Wang, C. -H. Chen and C. -S. Chang, “A 114GHz VCO in 0.13-μm CMOS technology,” IEEE Int. Solid-State Circuits Conf., pp. 404-606, Sept. 2005.
    [21] Y. Chang, Y. Chiang and C. Yang, “A V-Band Push-Push VCO With Wide Tuning Range Using 0.18 μm CMOS Process,” IEEE Microwave and Wireless Components Letters, vol. 25, no. 2, pp. 115-117, Feb. 2015.
    [22] Y. -H. Cho, M. -D. Tsai, H. -Y. Chang, C. -C. Chang and H. Wang, “A low phase noise 52-GHz push-push VCO in 0.18-μm bulk CMOS technologies,” in IEEE Radio Frequency integrated Circuits (RFIC) Symposium, 2005, pp. 131-134
    [23] H. Chiu and C. Kao, “A Wide Tuning Range 69 GHz Push-Push VCO Using 0.18 μm CMOS Technology,” IEEE Microwave and Wireless Components Letters, vol. 20, no. 2, pp. 97-99, Feb. 2010
    [24] E. Monaco, M. Pozzoni, F. Svelto and A. Mazzanti, “Injection-Locked CMOS Frequency Doublers for μ-Wave and mm-Wave Applications,” IEEE Journal of Solid-State Circuits, vol. 45, no. 8, pp. 1565-1574, Aug. 2010.
    [25] S. Chu and C. Wang, “An 80 GHz Wide Tuning Range Push-Push VCO With gm-Boosted Full-Wave Rectification Technique in 90 nm CMOS,” IEEE Microwave and Components Letters, vol. 22, no.4, pp. 203-205, April 2012.
    [26] L. Li, P. Reynaert, and M. Steyaert, “A 60-GHz CMOS VCO using capacitance- splitting and gate-drain impedance-balancing techniques,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 2, pp. 406-413, Feb. 2011.
    [27] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. of Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
    [28] T. H. Lee and A. Hajimiri, “Oscillator phase noise: A tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326-336, Mar. 2000.
    [29] K. Scheir, S. Bronckers, J. Borremans, P. Wambacq and Y. Rolain, “A 52GHz phased-array receiver front-end in 90nm digital CMOS” IEEE ISSCC Dig., pp. 184–185, Feb. 2008.
    [30] N. Kim, Y. Oh, and J. -S. Rieh, “A 47 GHz LC cross-coupled VCO employing high- Q island-gate varactor for phase noise reduction” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 2, pp. 94-96, Feb. 2010.
    [31] N. Nouri and J. F. Buckwalter, “A 45-GHz rotary-wave voltage-controlled oscillator” IEEE Trans. Microw. Theory Tech., vol. 59, no. 2, pp. 383-392, Feb. 2011.
    [32] V. P. Trivedi and K. -H. To, “A Novel mmWave CMOS VCO with an AC-Coupled LC Tank,” in IEEE Radio Frequency Integrated Circuits Symp. Dig., 2012, pp. 515-518.
    [33] Y. -C. Wang, H. -K. Chiou and K. -H. Chien “A constant output power Q-band VCO with distributed cross-coupled-Gm core and A-mode pMOS varactors,” in Proc. IEEE Asia-Pacific Microw. Conf., 2014, pp. 886-888.
    [34] 劉家妤,應用於94-GHz CMOS射頻前端與整合GIPD天線之“混頻器優先”次諧波射頻接收機的毫米波混頻器之研製,國立成功大學電腦與通信工程研究所碩士論文,民國一百零九年七月。
    [35] 林新皓,毫米波CMOS可調式混合變壓器射頻收發機雙工放大器與V-/W-band功率放大器之研製,國立成功大學電腦與通信工程研究所碩士論文,民國一百零八年七月。
    [36] M. H. Kashani, R. Molavi, and S. Mirabbasi, “A 2.3 mW 26.3-GHz gm-boosted differential colpitts VCO with 20% tuning range in 65-nm CMOS,” IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 4, pp. 1556-1565, Feb. 2019.
    [37] A. Yazdi and M. M. Green, “A 40 GHz Differential Push-Push VCO in 0.18μm CMOS for Serial Communication,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 11, pp. 725-727, Nov. 2009.
    [38] B. Razavi, Design of Analog CMOS Integrated Circuit, 2nd, McGraw-Hill, 2017.
    [39] M. Adnan and E. Afshari, “A 105-GHz VCO With 9.5% Tuning Range and 2.8-mW Peak Output Power in a 65-nm Bulk CMOS Process,” IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 4, pp. 753-762, April 2014.
    [40] X. Liu, C. Chen, J. Ren and H. C. Luong, “Transformer-based varactor-less 96GHz–110GHz VCO and 89GHz–101GHz QVCO in 65nm CMOS,” IEEE Asian Solid-State Circuits Conference (A-SSCC), Toyama, 2016, pp. 357-360.
    [41] T. Xi, S. Guo, P. Gui, D. Huang, Y. Fan and M. Morgan, “Low-Phase-Noise 54-GHz Transformer-Coupled Quadrature VCO and 76-/90-GHz VCOs in 65-nm CMOS,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 7, pp. 2091-2103, July 2016.
    [42] A. Tarkeshdouz, M. H. Kashani, E. H. Hafshejani, S. Mirabbasi and E. Afshari, “An 82.2-to-89.3 GHz CMOS VCO with DC-to-RF Efficiency of 14.8%,” IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Boston, MA, USA, 2019, pp. 331-334.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE