| 研究生: |
王俐文 Wang, Li-Wen |
|---|---|
| 論文名稱: |
纖維母細胞生長因子九在TM3小鼠萊氏前驅細胞中腫瘤發生的作用 Effect of Fibroblast Growth Factor 9 on TM3 Progenitor Leydig Cell Tumorigenesis |
| 指導教授: |
黃步敏
Huang, Bu-Miin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 細胞生物與解剖學研究所 Institute of Cell Biology and Anatomy |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 纖維母細胞生長因子九 、萊氏細胞 、細胞增生 、細胞遷移 、上皮間質轉化 、腫瘤生長 、腫瘤發生 |
| 外文關鍵詞: | FGF9, Leydig progenitor cell, cell proliferation, cell migration, EMT, tumorigenesis |
| 相關次數: | 點閱:77 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
纖維母細胞生長因子九(FGF9)是纖維母細胞生長因子的成員,對於睾丸發育中起重要作用。然而,高表達的纖維母細胞生長因子九與幾種人類癌症例如胃、肺、卵巢和前列腺腫瘤相關。當細胞受到外部壓力或異常調節時,可誘發腫瘤發生,從而引起過度的細胞增生,並伴有與轉移相關的上皮間質轉化 (Epithelial–mesenchymal transition)。先前的研究已經表示,局部黏合激酶 (Focal Adhesion Kinase) 的活性可以操縱腫瘤的表型,導致不受控制的增生和與轉移,且與腫瘤發生是高度相關的。先前我們實驗室已經證明FGF9可以在小鼠萊氏前驅細胞(TM3)中誘導體外細胞增生,細胞遷移和侵襲,而這可能與睾丸腫瘤的發展有關。因此,我們假設FGF9可以誘導萊氏前驅細胞的腫瘤發生。我們發現FGF9可以增強小鼠萊氏前驅細胞(TM3)細胞的增生和遷移以及間質標記物的表現增加。在TM3細胞中,FGF9還可以誘導FAK途徑中Y397位點磷酸化的FAK表達,以及絲裂原活化蛋白激酶 (Mitogen-Activated Protein Kinase) 途徑中ERK、 JNK、 p38的磷酸化,FGF9也可以誘導磷脂酰肌醇3-激酶 (PI3K)途徑中Akt的磷酸化。此外,使用FAK、MAPK和PI3K的特異性抑制劑分別抑制其相關途徑,抑制的結果進一步說明了由FGF9刺激影響的途徑中,FAK途徑位於上游,然後接著影響p-Akt、p-ERK和p-JNK途徑,然而磷酸化的ERK和JNK會影響下游p-p38途徑。此外,FAK抑制劑(PF573228) 、ERK抑制劑(U0126)和JNK抑制劑(SP600125)可以抑制TM3細胞的細胞增生,從而證明FAK、ERK和JNK途徑在FGF9刺激的TM3細胞增生中是至關重要的。在同種移植的小鼠模型中,對重症聯合免疫缺陷小鼠(NOD-SCID)皮下注射TM3細胞,從結果可以看到另外給予FGF9組別的腫瘤體積和重量明顯高於對照組,而使用ERK抑制劑的組別其小鼠的腫瘤生長顯著的被抑制。進一步使用免疫組織化學染色觀察小鼠的腫瘤切片,可以觀察到另外給予FGF9的組別,間質標記物的表現量增加。總結來說,FGF9 可以透過FAK、PI3K和MAPK 途徑的活化來誘導EMT的現象,從而使TM3前驅細胞的腫瘤發生。
Fibroblast growth factor 9 (FGF9), a member of the FGF family, plays an important role in testicular developments. However, high expression of FGF9 is associated with several human tumors, such as gastric, lung, ovarian, and prostate tumors. Tumorigenesis can be induced when cells are subjected to external stress or abnormal regulation, causing excessive cell proliferation with epithelial-mesenchymal transition (EMT) related to metastasis. Previous studies have also shown that focal adhesion kinase (FAK) activity can manipulate tumor phenotypes, leading to uncontrolled proliferation and metastasis highly associated with tumorigenesis. Previously, our lab has shown FGF9 could induce cell proliferation, migration, and invasion in vitro in TM3 mouse Leydig progenitor cells, which associated with testicular tumor development. Therefore, we hypothesized that FGF9 could induce testicular Leydig progenitor cell tumorigenesis. We found that FGF9 enhanced TM3 cell proliferation, migration and the increase in expression of mesenchymal markers. FGF9 could also induce the expressions of pY397-FAK, MAPK pathway (phosphor-ERK, phosphor-JNK and phosphor-p38), and PI3K pathway (phosphor-Akt) in TM3 cells in vitro. In addition, specific inhibitor for FAK, MAPK and PI3K could suppress its correlated pathway, respectively. These results illustrated a possible hierarchy among those pathways stimulated by FGF9 and showing FAK is in the upstream, which regulated p-Akt, p-ERK, and p-JNK pathways, and then p-ERK and p-JNK regulate downstream p-p38 pathway. Moreover, FAK inhibitor (PF573228), ERK inhibitor (U0126) and JNK inhibitor (SP600125) could inhibit TM3 cell proliferation, confirming that FAK, ERK, and JNK pathways were essential. In allograft in vivo study, results of subcutaneous injection of TM3 progenitor cells to the severe combined immunodeficiency (SCID) mice showed that tumor volumes and weights in FGF9-treated group were significantly higher than control groups. Moreover, ERK inhibitor could significantly inhibit tumor growth in SCID mice with TM3 cells in vivo. Immunohistochemistry results further showed that expressions of mesenchymal markers were increased in FGF9 group. In conclusion, FGF9 induces TM3 cell tumorigenesis with the induction of EMT via the activation of FAK, PI3K, and MAPK pathways.
Babina, I.S., and Turner, N.C. (2017). Advances and challenges in targeting FGFR signalling in cancer. Nature Reviews Cancer 17, 318-332.
Borowicz, S., Van Scoyk, M., Avasarala, S., Karuppusamy Rathinam, M.K., Tauler, J., Bikkavilli, R.K., and Winn, R.A. (2014). The soft agar colony formation assay. J Vis Exp, e51998.
Bottcher, R.T., and Niehrs, C. (2005). Fibroblast growth factor signaling during early vertebrate development. Endocr Rev 26, 63-77.
Brabletz, T., Kalluri, R., Nieto, M.A., and Weinberg, R.A. (2018). EMT in cancer. Nat Rev Cancer 18, 128-134.
Chang, M.M., Lai, M.S., Hong, S.Y., Pan, B.S., Huang, H., Yang, S.H., Wu, C.C., Sun, H.S., Chuang, J.I., Wang, C.Y., et al. (2018). FGF9/FGFR2 increase cell proliferation by activating ERK1/2, Rb/E2F1, and cell cycle pathways in mouse Leydig tumor cells. Cancer Sci 109, 3503-3518.
Chen, H., Ge, R.-S., and Zirkin, B.R. (2009a). Leydig cells: From stem cells to aging. Molecular and cellular endocrinology 306, 9-16.
Chen, H., Ge, R.S., and Zirkin, B.R. (2009b). Leydig cells: From stem cells to aging. Mol Cell Endocrinol 306, 9-16.
Chen, T., You, Y., Jiang, H., and Wang, Z.Z. (2017). Epithelial-mesenchymal transition (EMT): A biological process in the development, stem cell differentiation, and tumorigenesis. J Cell Physiol 232, 3261-3272.
Chen, Y., Liu, P., Shen, D., Liu, H., Xu, L., Wang, J., Shen, D., Sun, H., and Wu, H. (2020). FAM172A inhibits EMT in pancreatic cancer via ERK-MAPK signaling. Biol Open 9 (2): bio048462. doi: 10.1242.
Colvin, J.S., Green, R.P., Schmahl, J., Capel, B., and Ornitz, D.M. (2001). Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell 104, 875-889.
Cotton, L.M., O'Bryan, M.K., and Hinton, B.T. (2008). Cellular signaling by fibroblast growth factors (FGFs) and their receptors (FGFRs) in male reproduction. Endocrine reviews 29, 193-216.
Crowe, A.R., and Yue, W. (2019). Semi-quantitative Determination of Protein Expression using Immunohistochemistry Staining and Analysis: An Integrated Protocol. Bio Protoc 9 (24): e3465. doi:10.21769.
De Craene, B., and Berx, G. (2013). Regulatory networks defining EMT during cancer initiation and progression. Nature Reviews Cancer 13, 97-110.
Deakin, N.O., and Turner, C.E. (2008). Paxillin comes of age. J Cell Sci 121, 2435-2444.
Franken, N.A., Rodermond, H.M., Stap, J., Haveman, J., and van Bree, C. (2006). Clonogenic assay of cells in vitro. Nat Protoc 1, 2315-2319.
Habert, R., Lejeune, H., and Saez, J.M. (2001). Origin, differentiation and regulation of fetal and adult Leydig cells. Mol Cell Endocrinol 179, 47-74.
Hall, J.E., Fu, W., and Schaller, M.D. (2011). Focal adhesion kinase: exploring Fak structure to gain insight into function. Int Rev Cell Mol Biol 288, 185-225.
Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57-70.
Hanks, S.K. (2013). FAK Family. In Encyclopedia of Biological Chemistry (Second Edition), W.J. Lennarz, and M.D. Lane, eds. (Waltham: Academic Press), pp. 265-268.
Hendrix, N.D., Wu, R., Kuick, R., Schwartz, D.R., Fearon, E.R., and Cho, K.R. (2006a). Fibroblast growth factor 9 has oncogenic activity and is a downstream target of Wnt signaling in ovarian endometrioid adenocarcinomas. Cancer Res 66, 1354-1362.
Hendrix, N.D., Wu, R., Kuick, R., Schwartz, D.R., Fearon, E.R., and Cho, K.R. (2006b). Fibroblast growth factor 9 has oncogenic activity and is a downstream target of Wnt signaling in ovarian endometrioid adenocarcinomas. Cancer Res 66, 1354-1362.
Huang, Y., Jin, C., Hamana, T., Liu, J., Wang, C., An, L., McKeehan, W.L., and Wang, F. (2015). Overexpression of FGF9 in prostate epithelial cells augments reactive stroma formation and promotes prostate cancer progression. Int J Biol Sci 11, 948-960.
Joannes, A., Jaillet, M., Mailleux, A., and Crestani, B. (2016). LSC Abstract - Activation of FGF9 and 18 in idiopathic pulmonary fibrosis promote survival and migration and inhibit myofibroblast differentiation of human lung fibroblasts. Eur Respir J 301, 615-629.
Johnson, G.L., and Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911-1912.
Kim, I., Young, R.H., and Scully, R.E. (1985). Leydig cell tumors of the testis. A clinicopathological analysis of 40 cases and review of the literature. Am J Surg Pathol 9, 177-192.
Kohno, M., and Pouyssegur, J. (2006). Targeting the ERK signaling pathway in cancer therapy. Ann Med 38, 200-211.
Labi, V., and Erlacher, M. (2015). How cell death shapes cancer. Cell Death Dis 6, doi:10.1038/cddis.2015.20
Lai, M.S., and Huang, B.M., (2016) The celluar and molecular mechanism of FGF9 induced steroidogenesis, testis development and tumorigenesis. (PhD dissertation), Nstional Cheng Kung University, Tainan, Taiwan.
Lai, I.R., Chu, P.Y., Lin, H.S., Liou, J.Y., Jan, Y.J., Lee, J.C., and Shen, T.L. (2010). Phosphorylation of focal adhesion kinase at Tyr397 in gastric carcinomas and its clinical significance. Am J Pathol 177, 1629-1637.
Lai, M.S., Cheng, Y.S., Chen, P.R., Tsai, S.J., and Huang, B.M. (2014). Fibroblast growth factor 9 activates akt and MAPK pathways to stimulate steroidogenesis in mouse leydig cells. PLoS One 9, e90243.
Lee, S.J., Kim, K.H., and Park, K.K. (2014). Mechanisms of fibrogenesis in liver cirrhosis: The molecular aspects of epithelial-mesenchymal transition. World J Hepatol 6, 207-216.
Li, S., Lu, J., Chen, Y., Xiong, N., Li, L., Zhang, J., Yang, H., Wu, C., Zeng, H., and Liu, Y. (2017). MCP-1-induced ERK/GSK-3beta/Snail signaling facilitates the epithelial-mesenchymal transition and promotes the migration of MCF-7 human breast carcinoma cells. Cell Mol Immunol 14, 621-630.
Li, Z.G., Mathew, P., Yang, J., Starbuck, M.W., Zurita, A.J., Liu, J., Sikes, C., Multani, A.S., Efstathiou, E., Lopez, A., et al. (2008). Androgen receptor-negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms. J Clin Invest 118, 2697-2710.
Liu, Y., Ma, J., Beenken, A., Srinivasan, L., Eliseenkova, A.V., and Mohammadi, M. (2017). Regulation of Receptor Binding Specificity of FGF9 by an Autoinhibitory Homodimerization. Structure 25, 1325-1336 e1323.
Marampon, F., Bossi, G., Ciccarelli, C., Di Rocco, A., Sacchi, A., Pestell, R.G., and Zani, B.M. (2009). MEK/ERK inhibitor U0126 affects in vitro and in vivo growth of embryonal rhabdomyosarcoma. Mol Cancer Ther 8, 543-551.
Marshall, J. (2011). Transwell((R)) invasion assays. Methods Mol Biol 769, 97-110.
Medici, D., Hay, E.D., and Olsen, B.R. (2008). Snail and Slug promote epithelial-mesenchymal transition through beta-catenin-T-cell factor-4-dependent expression of transforming growth factor-beta3. Mol Biol Cell 19, 4875-4887.
Mendis-Handagama, S.M., and Ariyaratne, H.B. (2001). Differentiation of the adult Leydig cell population in the postnatal testis. Biol Reprod 65, 660-671.
Mendoza, M.C., Er, E.E., and Blenis, J. (2011). The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 36, 320-328.
Mitra, S.K., Hanson, D.A., and Schlaepfer, D.D. (2005). Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6, 56-68.
Miyamoto, M., Naruo, K., Seko, C., Matsumoto, S., Kondo, T., and Kurokawa, T. (1993). Molecular cloning of a novel cytokine cDNA encoding the ninth member of the fibroblast growth factor family, which has a unique secretion property. Mol Cell Biol 13, 4251-4259.
Nemeth, Z., Szasz, A.M., Somoracz, A., Tatrai, P., Nemeth, J., Gyorffy, H., Szijarto, A., Kupcsulik, P., Kiss, A., and Schaff, Z. (2009). Zonula occludens-1, occludin, and E-cadherin protein expression in biliary tract cancers. Pathol Oncol Res 15, 533-539.
Ohgino, K., Soejima, K., Yasuda, H., Hayashi, Y., Hamamoto, J., Naoki, K., Arai, D., Ishioka, K., Sato, T., Terai, H., et al. (2014). Expression of fibroblast growth factor 9 is associated with poor prognosis in patients with resected non-small cell lung cancer. Lung Cancer 83, 90-96.
Ornitz, D.M., and Itoh, N. (2001). Fibroblast growth factors. Genome Biol 2,(3):REVIEWS3005. doi: 10.1186/gb-2001-2-3-reviews3005.
Ornitz, D.M., and Itoh, N. (2015a). The Fibroblast Growth Factor signaling pathway. Wires Dev Biol 4, 215-266.
Ornitz, D.M., and Itoh, N. (2015b). The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip Rev Dev Biol 4, 215-266.
Pirvola, U., Zhang, X., Mantela, J., Ornitz, D.M., and Ylikoski, J. (2004). Fgf9 signaling regulates inner ear morphogenesis through epithelial-mesenchymal interactions. Dev Biol 273, 350-360.
Polette, M., Mestdagt, M., Bindels, S., Nawrocki-Raby, B., Hunziker, W., Foidart, J.M., Birembaut, P., and Gilles, C. (2007). Beta-catenin and ZO-1: shuttle molecules involved in tumor invasion-associated epithelial-mesenchymal transition processes. Cells Tissues Organs 185, 61-65.
Primiceri, E., Chiriaco, M.S., Dioguardi, F., Monteduro, A.G., D'Amone, E., Rinaldi, R., Giannelli, G., and Maruccio, G. (2011). Automatic transwell assay by an EIS cell chip to monitor cell migration. Lab Chip 11, 4081-4086.
Rajendran, V., and Jain, M.V. (2018). In Vitro Tumorigenic Assay: Colony Forming Assay for Cancer Stem Cells. Methods Mol Biol 1692, 89-95.
Reuss, B., Hertel, M., Werner, S., and Unsicker, K. (2000). Fibroblast growth factors-5 and -9 distinctly regulate expression and function of the gap junction protein connexin43 in cultured astroglial cells from different brain regions. Glia 30, 231-241.
Rodriguez, L.G., Wu, X., and Guan, J.L. (2005). Wound-healing assay. Methods Mol Biol 294, 23-29.
Scanlon, C.S., Van Tubergen, E.A., Inglehart, R.C., and D'Silva, N.J. (2013). Biomarkers of epithelial-mesenchymal transition in squamous cell carcinoma. J Dent Res 92, 114-121.
Tahka, K.M. (1986). Current aspects of Leydig cell function and its regulation. J Reprod Fertil 78, 367-380.
Teishima, J., Shoji, K., Hayashi, T., Miyamoto, K., Ohara, S., and Matsubara, A. (2012). Relationship between the localization of fibroblast growth factor 9 in prostate cancer cells and postoperative recurrence. Prostate Cancer Prostatic Dis 15, 8-14.
Tomayko, M.M., and Reynolds, C.P. (1989). Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol 24, 148-154.
Tsai, M.L., Huang, H.P., Hsu, J.D., Lai, Y.R., Hsiao, Y.P., Lu, F.J., and Chang, H.R. (2014). Topical N-acetylcysteine accelerates wound healing in vitro and in vivo via the PKC/Stat3 pathway. Int J Mol Sci 15, 7563-7578.
Tu, T.H., and Huang, B.M., (2015) Effect and possible mechanism of fibroblast growth factor 9 on cell proliferation in mouse Leydig cell lines. (MS thesis), Nstional Cheng Kung University, Tainan, Taiwan.
Wang, M., Ren, D., Guo, W., Huang, S., Wang, Z., Li, Q., Du, H., Song, L., and Peng, X. (2016). N-cadherin promotes epithelial-mesenchymal transition and cancer stem cell-like traits via ErbB signaling in prostate cancer cells. Int J Oncol 48, 595-606.
Wang, S., Zhang, Z., Qian, W., Ji, D., Wang, Q., Ji, B., Zhang, Y., Zhang, C., Sun, Y., Zhu, C., et al. (2018). Angiogenesis and vasculogenic mimicry are inhibited by 8-Br-cAMP through activation of the cAMP/PKA pathway in colorectal cancer. Onco Targets Ther 11, 3765-3774.
Wesche, J., Haglund, K., and Haugsten, E.M. (2011). Fibroblast growth factors and their receptors in cancer. Biochem J 437, 199-213.
Wu, Y.Y., Sarkissyan, M., and Vadgama, J.V. (2016). Epithelial-Mesenchymal Transition and Breast Cancer. J Clin Med 5, doi:10.3390/jcm5020013
Yu, H., Gao, M., Ma, Y., Wang, L., Shen, Y., and Liu, X. (2018). Inhibition of cell migration by focal adhesion kinase: Time-dependent difference in integrin-induced signaling between endothelial and hepatoblastoma cells. Int J Mol Med 41, 2573-2588.
Zeisberg, M., and Neilson, E.G. (2009). Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 119, 1429-1437.
校內:2025-08-27公開