| 研究生: |
馮如羿 Ferng, Ruyi |
|---|---|
| 論文名稱: |
以微生物發酵開發永續替代蛋白:組成特性解析與取代肉應用評估 Development of sustainable alternative proteins via microbial fermentation: Composition characterization and evaluation of meat substitute applications |
| 指導教授: |
徐瑋萱
Hsu, Wei-Hsuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 食品安全衛生暨風險管理研究所 Department of Food Safety / Hygiene and Risk Management |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 永續發展目標 、釀酒酵母菌 、少孢根黴菌 、微生物蛋白質 、替代肉 |
| 外文關鍵詞: | Sustainable development goals, Saccharomyces cerevisiae, Rhizopus oligosporus, Microbial protein, Meat substitute |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據聯合國世界農糧組織 (Food and Agriculture Organization, FAO) 的預測,全球人口將在 2050 年達到 97 億。隨著人口快速增長,食品供應的不足將成為一個日益嚴峻的挑戰。為了應對此問題,開發替代蛋白質 (Alternative protein) 作為傳統動植物蛋白質的替代品,已成為解決食品短缺問題的潛在方案之一。在眾多替代蛋白質中,微生物蛋白質 (如來自酵母菌、真菌和細菌的蛋白質) 對環境負擔輕、所需資源少以及能夠在短時間內快速生產的特性而受到越來越多的關注。微生物蛋白質不僅能夠高效地轉換碳源,還具備優良的營養價值、功能性以及較低的生產成本,為未來食品供應提供了可行且永續的解決方案。本研究旨在探討微生物蛋白質的生產方式,並分析其物理化學性質。透過與常見的植物蛋白質-黃豆蛋白質比較,進一步了解微生物蛋白質在功能性和實際應用上的優勢與可能性。此外,本研究以少孢根黴菌菌絲體作為微生物肉原料,以探討其作為替代肉品之可行性。生產微生物蛋白質的菌株包括釀酒酵母菌 (Saccharomyces cerevisiae) 及少孢根黴菌 (Rhizopus oligosporus),其來源分別來自釀酒副產物之酵母菌粕 (Spent yeast) 及少孢根黴菌菌絲體 (R. oligosporus mycelium)。另以發酵槽培養少孢根黴菌菌絲體作為微生物肉原料,結合真空油炸 (Vacuum frying) 技術製成類雞米花產品,透過反應曲面法 (Response Surface Methodology, RSM) 探討鹽水醃漬濃度、油添加量與葡甘露聚醣添加量三因子對產品質地之影響,同時與市售雞米花、市售素雞米花進行質地剖面分析 (Texture profile analysis, TPA) 比較,找出 RSM 最佳配方之條件。實驗結果顯示,透過鹼萃取-等電點沉澱法,酵母菌粕與少孢根黴菌菌絲體的蛋白質含量均顯著提升。在胺基酸組成分析中,黃豆蛋白質 (Soybean protein, SP)、酵母菌蛋白質 (Yeast protein, YP)、真菌蛋白質 (Rhizopus protein, RP) 必需胺基酸含量分別為 39.78%、48.23%、39.68%。保水性測定結果顯示,加熱後 SP 之保水性顯著下降,而 YP 及 RP 無顯著差異。保油性測定結果顯示 RP 具有最高的保油能力。在熱性質分析中,RP 相較於 SP 及 YP 具有更高的熱穩定性,歸因於其蛋白質二級結構中具有較高比例的有序結構 (α-helix 與 β-sheet),使其在加熱過程中不易變性。綜合物化性質分析結果,RP 展現出作為替代蛋白質產品原料的開發潛力。反應曲面法預測模型結果顯示,藉由調整鹽水醃漬濃度、油添加量與葡甘露聚醣添加量的不同組合,可使真空油炸菌絲雞米花之質地剖面分析 (Texture profile analysis, TPA) 數值 (硬度、彈性、咀嚼性) 分別最接近市售雞米花與市售素雞米花的質地特性。
According to the FAO of the United Nations, the global population is projected to reach 9.7 billion by 2050, increasing pressure on food systems and food security. Alternative proteins have emerged as a promising solution to reduce reliance on traditional animal proteins. Microbial proteins from yeast, fungi and bacteria are gaining attention for their low environmental impact and fast production cycle. These proteins are efficient in converting carbon sources and possess excellent nutritional and functional properties, along with relatively low production costs, making them a sustainable option for future food supplies. This study focuses on the production and physicochemical analysis of microbial proteins and compares them with soy protein to evaluate their functional potential. The microbial sources used in this study include Saccharomyces cerevisiae from beer brewing byproduct-spent yeast and Rhizopus oligosporus mycelium. Additionally, R. oligosporus mycelium was cultivated in a bioreactor and used as a microbial meat analogue ingredient to produce mycelium-based popcorn chicken by vacuum frying. Response surface methodology (RSM) was applied to evaluate the effects of brine concentration, oil addition and konjac glucomannan addition on the textural properties of the final product. Texture Profile Analysis (TPA) was performed to compare mycelium-based, commercial popcorn chicken and commercial plant-based popcorn chicken samples. The results showed that protein contents of spent yeast and R. oligosporus mycelium were significantly increased through alkaline extraction-isoelectric precipitation. Amino acid composition analysis revealed that the essential amino acid contents of soybean protein (SP), yeast protein (YP) and Rhizopus protein (RP) were 39.78%, 48.23%, and 39.68%, respectively. Water holding capacity tests indicated that SP showed a significant decrease after heating, while no significant change was observed for YP and RP. In terms of oil holding capacity, RP exhibited the highest oil retention ability. Thermal property analysis showed that RP had greater thermal stability compared to SP and YP, attributed to its higher proportion of ordered secondary structures, which reduced protein denaturation during heating. Overall, based on the physicochemical analysis, RP demonstrated strong potential as a raw material for alternative protein products. The results of the RSM predictive model indicated that by adjusting the combinations of brine concentration, oil addition and konjac glucomannan content, the texture profile analysis (TPA) values (hardness, springiness, chewiness) of vacuum-fried mycelium-based popcorn chicken could be made to have a texture similar to both commercial popcorn chicken and commercial plant-based popcorn chicken.
楊碧華、陳勁初 (2023 年)。我國首例真菌蛋白-未來肉之開發及其市場潛力。食品資訊,316,P.28-P.30。
蔡書憲、簡全基、李士畦、范植軒、鄭俊昇、張佩琪、李明怡 (2021 年)。淨零碳排趨勢帶動之替代性肉品的產業發展、研究進展及未來挑戰。長庚科技學刊,34,P.1-P.15。
周佳儒。2023 年。以液態表面培養法探討培養條件對 Rhizopus oligosporus 菌絲產量與型態之影響。國立中興大學食品暨應用生物科技學系碩士學位論文,台中市,臺灣。
Aftabuddin, M., Kundu, S. (2007). Hydrophobic, hydrophilic, and charged amino acid networks within protein. Biophysical Journal, 93: 225-231.
Agilent Technologies. (2000). Rapid, accurate, sensitive, and reproducible HPLC analysis of amino acids. pp. 1-10.
Ahmed, M. G., Gouda, S. A., Hassanein, N. M. (2024). Production of single cell protein by fungi from different food wastes. Biomass Conversion and Biorefinery, 16: 231-238.
Akhtar, Y., Isman, M. B. (2018). Insects as an alternative protein source. Proteins Food Process, 10: 263-288.
Aliño, M., Grau, R., Fernández-Sánchez, A., Arnold, A., Barat, J. M. (2010). Influence of brine concentration on swelling pressure of pork meat throughout salting. Meat Science, 86: 600-606.
Antinori, M. E., Ceseracciu, L., Mancini, G., Heredia-Guerrero, J. A., Athanassiou, A. (2020). Fine-tuning of physicochemical properties and growth dynamics of mycelium-based materials. ACS Applied Bio Materials, 3: 1044-1051.
Anupama, Ravindra, P. (2000). Value-added food: Single cell protein. Biotechnology Advances, 18: 459-479.
Ashraf, J., Liu, L., Awais, M., Xiao, T., Wang, L., Zhou, X., Tong, L. T., Zhou, S. (2020). Effect of thermosonication pre-treatment on mung bean (Vigna radiata) and white kidney bean (Phaseolus vulgaris) proteins: Enzymatic hydrolysis, cholesterol lowering activity and structural characterization. Ultrasonics Sonochemistry, 66: 105121.
Ayustaningwarno, F., Dekker, M., Fogliano, V., Verkerk, R. (2018). Effect of vacuum frying on quality attributes of fruits. Food Engineering Reviews, 10: 154-164.
Barbano, D. M., Clark, J. L. (1990). Kjeldahl method for determination of total nitrogen content of milk: Collaborative study. Journal of the Association of Official Analytical Chemists, 73: 849-859.
Bajić, B., Vučurović, D., Vasić, Ð., Mučibabić, R., Dodić, S. (2023). Biotechnological production of sustainable microbial proteins from agro-industrial residues and by-products. Foods, 12: 107.
Balagurunathan, B., Ling, H., Choi, W. J., Chang, M. W. (2022). Potential use of microbial engineering in single-cell protein production. Current Opinion in Biotechnology, 76: 102740.
Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25: 207-210.
Berrazaga, I., Micard, V., Gueugneau, M., Walrand, S. (2019). The role of the anabolic properties of plant- versus animal-based protein sources in supporting muscle mass maintenance: A critical review. Nutrients, 11: 1825.
Bhargav, S., Panda, B. P., Ali, M., Javed, S. (2008). Solid-state fermentation: An overview. Chemical and Biochemical Engineering Quarterly, 22: 49-70.
Bleakley, S., Hayes, M. (2017). Algal proteins: Extraction, application, and challenges concerning production. Foods, 6: 33.
Bohrer, B. M. (2019). An investigation of the formulation and nutritional composition of modern meat analogue products. Food Science and Human Wellness, 8: 320329.
Bouchon, P B., Aguilera, J. M., Pyle, D. L. (2003). Structure oil-absorption relationships during deep-fat frying. Journal of Food Science, 9: 2711-2716.
Branch, S., Maria, S. (2017). Evaluation of the functional properties of mung bean protein isolate for development of textured vegetable protein. International Food Research Journal, 24: 1595-1605.
Breig, S. J. M., Luti, K. J. K. (2021). Response surface methodology: A review on its applications and challenges in microbial cultures. Materials Today: Proceedings, 42: 2277-2284.
Brishti, F. H., Chay, S. Y., Muhammad, K., Ismail-Fitry, M. R., Zarei, M., Karthikeyan, S., Caballero-Briones, F., Saari, N. (2021). Structural and rheological changes of texturized mung bean protein induced by feed moisture during extrusion. Food Chemistry, 344: 128643.
Brishti, F. H., Chay, S. Y., Muhammad, K., Ismail-Fitry, M. R., Zarei, M., Karthikeyan, S., Saari, N. (2020). Effects of drying techniques on the physicochemical, functional, thermal, structural and rheological properties of mung bean (Vigna radiata) protein isolate powder. Food Research International, 138: 109783.
Carbonaro, M., Maselli, P., Nucara, A. (2012). Relationship between digestibility and secondary structure of raw and thermally treated legume proteins: A fourier transform infrared (FT-IR) spectroscopic study. Amino Acids, 43: 911-921.
Chandran, A. S., Kashyap, P., Thakur, M. (2024). Effect of extraction methods on functional properties of plant proteins: A review. eFood, 5: e151.
Chakraborty, P., Mallik, A., Sarang, N., Lingam, S. S. (2019). A review on alternative plant protein sources available for future sustainable aqua feed production. International Journal of Chemical Studies, 7: 1399-1404.
Chemat, F., Rombaut, N., Sicaire, A., Meullemiestre, A., Fabiano-Tixier, A., Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34: 540-560.
Chen, B., Yu, C., Liu, J., Yang, Y., Shen, X., Liu, S., Tang, X. (2017). Physical properties and chemical forces of extruded corn starch fortified with soy protein isolate. International Journal of Food Science & Technology, 52: 2604-2613.
Chen, L., Opara, U. L. (2013). Approaches to analysis and modeling texture in fresh and processed. Journal of Food Engineering, 119: 497-507.
Chen, Y. D., Peng, J., Lui, W B. (2009). Composition optimization of poly (vinyl alcohol)-cornstarch-blended biodegradable resin analyzed using response surface methodology. Journal of Applied Polymer Science, 113: 258-264.
Cheng, M. S., Rosentrater, K. A. (2019). Techno-economic analysis of extruding-expelling of soybeans to produce oil and meal. Agriculture, 9: 87.
Cheng, W. Y., Peng J., Lui, W. B. (2011). Effects of α-amylase and glycerol levels on the composition optimization of poly (β-hydroxybutyrate-co-valerate)/starch blended biodegradable resin analyzed with response surface methodology. Journal of Applied Polymer Science, 120: 2571-2578.
Chin, Y. L., Keppler, J. K., Dinani, S. T., Chen, W. N., Boom, R. (2024). Brewers’ spent grain proteins: The extraction method determines the functional properties. Innovative Food Science and Emerging Technologies, 94: 103666.
Choe, S., Sun, S. X. (2005). The elasticity of α-helices. The Journal of Chemical Physics, 122: 244912.
Costa, A. C., Atala, D. I. P., Maugeri, F., Maciel, R. (2001). Factorial design and simulation for the optimization and determination of control structures for an extractive alcoholic fermentation. Process Biochemistry, 37: 125-137.
Cui, C., Zhao, M., Yuan, B., Zhang, Y., Ren, J. (2013). Effect of pH and pepsin limited hydrolysis on the structure and functional properties of soybean protein hydrolysates. Journal of Food Science, 78: 1871-1877.
Cui, Q. Y., Ni, X. H., Zeng, L., Tu, Z., Li, J., Sun, K., Chen, X., Li, X. H. (2017). Optimization of protein extraction and decoloration conditions for tea residues. Horticultural Plant Journal, 3: 172-176.
Datar, I., Betti, M. (2010). Possibilities for an in vitro meat production system. Innovative Food Science & Emerging Technologies, 11: 13-22.
De Castro, R. J. S., Ohara, A., Aguilar, J. G. D. S., Domingues, M. A. F. (2018). Nutritional, functional and biological properties of insect proteins: Processes for obtaining, consumption and future challenges. Trends in Food Science & Technology, 76: 82-89.
Delahaije, R. J. B. M., Wierenga, P. A. (2022). Hydrophobicity enhances the formation of protein-stabilized foams. Molecules, 27: 2358.
Deleu, L. J., Lambrecht, M. A., Van de Vondel, J., Delcour, J. A. (2019). The impact of alkaline conditions on storage proteins of cereals and pseudo-cereals. Current Opinion in Food Science, 25: 98-103.
Dinali, M., Liyanage, R., Silva, M., Newman, L., Adhikari, B., Wijesekara, I., Chandrapala, J. (2024). Fibrous structure in plant-based meat: High-moisture extrusion factors and sensory attributes in production and storage. Food Reviews International, 40: 2940-2968.
Elzerman, J. E., Hoek, A. C., Boekel, M. A. J. S., Luning, P. A. (2011). Consumer acceptance and appropriateness of meat substitutes in a meal context. Food Quality and Preference, 22: 233-240.
Fan, T., Hu, J., Fu, L., Zhang, L. (2015). Optimization of enzymolysis-ultrasonic assisted extraction of polysaccharides from Momordica charabtia L. by response surface methodology. Carbohydrate Polymer, 115: 701-706.
Ferreira, S. L. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandao, G. C., Silva, E. G. P., Portugal, L. A., Reis, P. S., Souza, A. S., Santos, W. N. L. (2007). Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta, 597: 179-186.
Finnigan, T. J. A., Wall, B. T., Wilde, P. J., Stephens, F. B., Taylor, S. L., Freedman, M. R. (2019). Mycoprotein: The future of nutritious nonmeat protein, a symposium review. Current Developments in Nutrition, 3: 21.
Foegeding, E. A., Luck, P. J., Dais, J. P. (2006). Factors determining the physical properties of protein foams. Food Hydrocolloids, 20: 284-292.
Furlan, O., Oliveira, N. S., Paula, R. C., Rosa, R. T., Michelotto, P. V., Weber, S H., Bianchini, L. F., Rosa, E. A. R. (2024). Pilot scale production of high-content mycoprotein using Rhizopus microsporus var. oligosporus by submerged fermentation and agro-industrial by-products. Bioresource Technology, 413: 131515.
Futami, J., Miyamoto, A., Hagimito, A., Suzuki, S., Futami, M., Tada, H. (2017). Evaluation of irreversible protein thermal inactivation caused by breakage of disulphide bonds using methanethiosulphonate. Scientific Reports, 7: 12471.
Gamarra-Castillo, O., Echeverry-Montaña, N., Marbello-Santrich, A., Hernández-Carrión, M., Restrepo, S. (2022). Meat substitute development from fungal protein (Aspergillus oryzae). Foods, 11: 2940.
Gao, K., Rao, J. J., Chen, B. C. (2024a). Plant protein solubility: A challenge or insurmountable obstacle. Advances in Colloid and Interface Science, 324: 103074.
Gao, Y., Lian, W., Zhang, H., Huang, Y., Liu, L., Zhu, X. (2024b). Mechanism of L-cysteine-induced fibrous structural changes of soybean protein at different high-moisture extrusion zones. International Journal of Biological Macromolecules, 268: 131621.
Gao, Z. L., Shen, P. Y., Lan, Y., Cui, L. Q., Ohm, J., Chen, B. C., Rao, J. J. (2020). Effect of alkaline extraction pH on structure properties, solubility, and beany flavor of yellow pea protein isolate. Food Research International, 131: 109045.
Garayo, J., Moreira, R. (2002). Vacuum frying of potato chips. Journal of Food Engineering, 55: 181-191.
Geada, P., Moreira, C., Silva, M., Nunes, R., Madureira, L., Rocha, C. M. R., Pereira, R. N., Vicente, A. A., Teixeira, J. A. (2021). Algal proteins: Production strategies and nutritional and functional properties. Bioresource Technology, 332: 125125.
Ghorai, S., Banik, S. P., Verma, D., Chowdhury, S., Mukherjee, S., Khowala, S. (2009). Fungal biotechnology in food and feed processing. Food Research International, 42: 577-597.
Gibbs, B. F., Zoungman, A., Masse, R., Mulligan, C. (2004). Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Research International, 37: 123-131.
Golberg, A., Sack, M., Teissie, J., Pataro, G., Pliquett, U., Saulis, G., Stefan, T., Miklavcic, D., Vorobiev, E., Frey, W. (2016). Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development. Biotechnology for Biofuels, 9: 94.
Gorissen, S. H. M., Crombag, J. J. R., Senden, J. M. G., Waterval, W. A. H., Bierau, J., Verdijk, L. B., Loon, L. J. C. (2018). Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids, 50: 1685-1695.
Greenfield, N. J. (2007). Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols, 1: 2876-2890.
Grimm, L. H., Kelly, S., Krull, R., Hempel, D. C. (2005). Morphology and productivity of filamentous fungi. Applied Microbiology and Biotechnology, 69: 375-384.
Grossmann, L., Weiss, J. (2021). Alternative protein sources as technofunctional food ingredients. Annual Review Food Science Technology, 12: 93-117.
Hadi, J., Brightwell, G. (2021). Safety of alternative proteins: Technological, environmental and regulatory aspects of cultured meat, plant-based meat, insect protein and single-cell protein. Foods, 10: 1226.
Hadidi, M., Khaksar, F. B., Pagan, J., Ibarz, A. (2020). Application of ultrasound- assisted alkaline isoelectric precipitation (UUAAIP) technique for producing alfalfa protein isolate for human consumption: Optimization, comparison, physicochemical, and functional properties. Food Research International, 130: 108907.
Handoyo, T., Morita, N. (2007). Structural and functional properties of fermented soybean (Tempeh) by using Rhizopus oligosporus. International Journal of Food Properties, 9: 347-355.
Haneef, M., Ceseracciu, L., Canale, C., Bayer, I. S., Heredia-Guerrero, J. A., Athanassiou, A. (2017). Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Scientific Reports, 7: 41292.
Hansnan, F. F. B., Feng, Y., Sun, T., Parraga, K., Schwarz, M., Zarei, M. (2023). Insects as valuable sources of protein and peptides: Production, functional properties, and challenges. Foods, 12: 4243.
Herz, E., Moll, P., Schmitt, C., Weiss, J. (2023). Binders in foods: Definition, functionality, and characterization. Food Hydrocolloids, 145: 109077.
Holt, R. R., Munafo, J. P., Salmen, J., Keen, C. L., Mistry, B. S., Whiteley, J. M., Schmitz, H. H. (2024). Mycelium: A nutrient-dense food to help address world hunger, promote health, and support a regenerative food system. Journal of Agricultural and Food Chemistry, 72: 2697-2707.
Hong, F. L., Peng J., Lui W. B. (2011). Optimization of the process variables for the synthesis of starch-based biodegradable resin using response surface methodology. Journal of Applied Polymer Science, 119: 1797-1804.
Huang, H. W., Hsu, C. P., Yang, B. H., Wang, C. Y. (2013). Advances in the extraction of natural ingredients by high pressure extraction technology. Trends in Food Science & Technology, 33: 54-62.
Ibarruri, J., Cebrián, M., Hernández, I. (2021). Valorisation of fruit and vegetable discards by fungal submerged and solid-state fermentation for alternative feed ingredients production. Journal of Environmental Management, 281: 111901.
Inui, T., Takeda., Y., Iizuka, H. (1965). Taxonomical studies on genus Rhizopus. The Journal of General and Applied Microbiology, 11: 1-121.
Jafari, S., Hezaveh, E., Jalilpiran, Y., Jayedi, A., Wong, A., Safaiyan, A., Barzegar, A. (2022). Plant-based diets and risk of disease mortality: A systematic review and meta-analysis of cohort studies. Critical Reviews in Food Science and Nutrition, 62: 7760-7772.
Jafarzadeh, S., Qazanfarzadeh, Z., Majzoobi, M., Sheiband, S., Oladzadabbasabad, N., Esmaeili, Y., Barrow, C. J., Timms, W. (2024). Alternative proteins; A path to sustainable diets and environment. Current Research in Food Science, 9: 100882.
Jarunglumler, T., Chantanuson, R., Hayashi, R., Katano, Y., Kusakari, T., Nagamine, S., Matsumiya, K., Kobayashi, T., Nakagawa, K. (2023). Techno-economic assessment of plant-based meat analogue produced by the freeze alignment technique. Future Foods, 8: 100269.
Janssen, M., Wijffels, R. H., Barbosa, M. (2022). Microalgae based production of single-cell protein. Current Opinion in Biotechnology, 75: 102705.
Jappe, U. (2023). Vegan diet-alternative protein sources as potential allergy. Allergo Journal International, 32: 251-257.
Jiang, L., Wang, Z., Li, Y., Meng, X., Sui, X., Qi, B., Zhou, L. (2015). Relationship between surface hydrophobicity and structure of soy protein isolate subjected to different ionic strength. International Journal of Food Properties, 18: 1059-1074.
Jiang, L. Z., Zhang, H. Y., Zhang, J. Y., Liu, S. B., Tian, Y. C., Cheng, T. F., Guo, Z. W., Wang, Z. J. (2024). Improve the fiber structure and texture properties of plant-based meat analogues by adjusting the ratio of soy protein isolate (SPI) to wheat gluten (WG). Food Chemistry: X, 24: 101962.
Jo, C., Zhang, J., Tam, J. M., Church, G. M., Khalil, A. S., Segré, D., Tang, T. C. (2023). Unlocking the magic in mycelium: Using synthetic biology to optimize filamentous fungi for biomanufacturing and sustainability. Materials Today Bio, 19: 100560.
Jones, S. W., Karpol, A., Friedman, S., Maru, B. T., Tracy, B. P. (2020). Recent advances in single cell protein use as a feed ingredient in aquaculture. Current Opinion in Biotechnology, 61: 189-197.
Jung, S., Lamsal, B. P., Stepien, V., Johnson, L. A., Murphy, P. A. (2006). Functionality of soy protein produced by enzyme-assisted extraction. Journal of the American Oil Chemists’ Society, 83: 71-78.
Karim, A., Gerliani, N., Aider, M. (2020). Kluyveromyces marxianus: An emerging yeast cell factory for applications in food and biotechnology. International Journal of Food Microbiology, 333: 108818.
Kołodziejczak, K., Onopiuk, A., Szpicer, A., Poltorak, A. (2022). Meat analogues in the perspective of recent scientific research: A Review. Foods, 11: 105.
Kumar, M., Tomar, M., Potkule, J., Verma, R., Punia, S., Mahapatra, A., Belwal, T. Dahuja, A., Joshi, S., Berwal, M. K., Satankar, V., Bhoite, A. G., Amarowicz, R., Kaur, C., Kennedy, J. F. (2021). Advances in the plant protein extraction: Mechanism and recommendations. Food Hydrocolloids, 115: 106595.
Kumar, R., Hegde, A. S., Sharma, K., Parmar, P., Srivatsan, V. (2022). Microalgae as a sustainable source of edible proteins and bioactive peptides - Current trends and future prospects. Food Research International, 157: 111338.
Lam, A. C. Y., Karaca, A. C., Tyler, R. T., Nickerson, M. T. (2018). Pea protein isolates: Structure, extraction, and functionality. Food Reviews International, 34: 126-147.
Langyan, S., Yadava P., Khan, F. N., Dar, Z. A., Singh, R., Kumar, A. (2022). Sustaining protein nutrition through plant-based foods. Frontiers Nutrition, 8: 772573.
Lee, D. Y., Venter, C., Choi, Y., Park, J. M., Han, D., Kim, J. S., Park, J. W., Namkung, S., Jr, E. M., Lee, K. H., Jang, A., Kim, G. D., Hur, S. J. (2024). Market status of meat analogs and their impact on livestock industries. Food Science of Animal Resources, 44: 1213-1251.
Lee, H. J., Kim, J. H., Ji, D. S., Lee, C. H. (2019). Effects of heating time and temperature on functional properties of proteins of yellow mealworm larvae (Tenebrio molitor L.). Food Science of Animal Resources, 39: 296-308.
Lee, M. B., Kennelly, C., Watson, R., Hewitt, C. N. (2018). Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. Elementa: Science of the Anthropocene, 6: 52.
Li, L., Huang, Y., Liu, Y., Xiong, Y., Wang, X., Tong, L., Wang, F., Fan, B., Bai, X. (2023). Relationship between soybean protein isolate and textural properties of texturized vegetable protein. Molecules, 28: 7465.
Li, S., Chu, S., Lu, J., Wang, P., Ma, M. (2018). Molecular and structural properties of three major protein components from almond kernel. Journal of Food Processing and Preservation, 42: e13536.
Liu, Y. X., Cao, M. J., Liu, G. M. (2019). Texture analyzers for food quality evaluation. Evaluation Technologies for Food Quality, 6: 441-463.
Lu, Z. W., Chen, Z. Q., Liu, Y. G., Hua, X. X., Gao, C. J., Liu, J. J. (2024). Morphological engineering of filamentous fungi: Research progress and perspectives. Journal of Microbiology and Biotechnology, 34: 1197-1205.
Ma, C. X., Xia, S. G., Song, J., Hou, Y. K., Hao, T. T., Shen, S., Li, K., Xue, C. H., Jiang, X. M. (2023a). Yeast protein as a novel dietary protein source: Comparison with four common plant proteins in physicochemical properties. Current Research in Food Science, 7: 100555.
Ma, Z., Mondor, M., Valencia, F. G., Hernández, A. J. (2023b). Current state of insect proteins: Extraction technologies, bioactive peptides and allergenicity of edible insect proteins. Food & Function, 14: 8129-8156.
Malia Y., Owolabi, L. O., Chotanaphuti, T., Sakdibhornssup, N., Elliott, C. T., Visessanguan, W., Karoonuthaisiri, N., Petchkongkaew, A. (2024). Current challenges of alternative proteins as future foods. NPJ Science of Food, 8: 53.
Manteca, A., Alonso-Caballero, Á., Fertin, M., Poly, S., Sancho, D. D., Perez-Jimenez, R. (2017). The influence of disulfide bonds on the mechanical stability of proteins is context dependent. Journal of Biological Chemistry, 292: 13374-13380.
Medeiros, F., Aleman, R. S., Gabríny, L., You, S. W., Hoskin, R. T. (2024). Current status and economic prospects of alternative protein sources for the food industry. Applied Sciences, 14: 3733.
Miklavcic, D., Vorobiev, E., Frey, W. (2016). Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development. Biotechnology for Biofuels, 9: 94.
Miladinov, G. (2023). Impacts of population growth and economic development on food security in low-income and middle-income countries. Fronters in Human Dynamics, 5: 1121662.
Mir, N. A., Riar, C. S., Singh, S., (2021). Rheological, structural and thermal characteristics of protein isolates obtained from album (Chenopodium album) and quinoa (Chenopodium quinoa) seeds. Food Hydrocolloids for Health, 1: 100019.
Mishyna, M., Keppler, J. K., Chen, J. (2021). Techno-functional properties of edible insect proteins and effects of processing. Current Opinion in Colloid and Interface Science, 56: 101508.
Moreira, R. G. (2014). Vacuum frying versus conventional frying - An overview. European Journal of Lipid Science and Technology, 116: 723-734.
Mussa, N. J., Chaijan, M., Thongkam, P., Wongnen, C., Kitpipit, W., Cavdar, H. K., Kim, S. R., Panpipat, W. (2025). Rheological and gelling properties of chicken-mushroom hybrid gel for flexitarian-friendly functional food applications. Foods, 14: 645.
Nasrabadi, M. N., Doost, A. S., Mezzenga, R. (2021). Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocolloids, 118: 106789.
Nasseri, A. T., Rasoul-Amini, S., Morowvat, M. H., Ghasemi, Y. (2011). Single cell protein: Production and process. American Journal of Food Technology, 6: 103-116.
Nirmal, N., Anyimadu, C. F., Khanashyam, A. C., Bekhit, A. E. A. (2025). Alternative protein sources: Addressing global food security and environmental sustainability. Sustainable Development, 33: 3958-3969.
Nishinari, K., Fang, Y., Guo, S., Phillips, G. O. (2014). Soy proteins: A review on composition, aggregation and emulsification. Food Hydrocolloids, 39: 301-318.
Nyyssölä, A., Suhonen, A., Ritala, A., Oksman-Caldentey, K. (2022). The role of single cell protein in cellular agriculture. Current Opinion in Biotechnology, 75: 102686.
Øverland, M., Tauson, A., Shearer, K., Skrede, A. (2010). Evaluation of methane-utilising bacteria products as feed ingredients for monogastric animals. Archives of Animal Nutrition, 64: 171-189.
Peng, H., Zhang, J., Wang, S., Qi, M., Yue, M., Zhang, S., Ma, C. (2022). High moisture extrusion of pea protein: effect of l-cysteine on product properties and the process forming a fibrous structure. Food Hydrocolloids, 129: 107633.
Phongthai, S., Lim, S. T., Rawdkuen, S. (2016). Optimization of microwave-assisted extraction of rice bran protein and its hydrolysates properties, Journal of Cereal Science, 70: 146-154.
Polizeli, M. L. T. M., Rizzatti, A. C. S., Monti, R., Terenzi, H. F., Jorge, J. A., Amorim, D. S. (2005). Xylanases from fungi: properties and industrial applications. Applied Microbiology and Biotechnology, 67: 577-591.
Post, M. J., Levenberg, S., Kaplan, D. L., Genovese, N., Fu, J., Bryant, C. J., Negowetti, N., Verzijden, K., Moutsatsou, P. (2020). Scientific, sustainability and regulatory challenges of cultured meat. Nature Food, 1: 403-415.
Prabha, K., Ghosh, P., Abdullah, S., Joseph, R. M., Krishnan, R., Rana, S. S., Pradhan, R. C. (2021). Recent development, challenges, and prospects of extrusion technology. Future Foods, 3: 100019.
Queiroz, L. S., Silva, N. F. N., Jessen, F., Mohammadifar, M. A., Stephani, R., Carvalho, A. F., Perrone, I., Casanova, F. (2023). Edible insect as an alternative protein source: A review on the chemistry and functionalities of proteins under different processing methods. Heliyon, 9: 14831.
Raghavarao, K. S. M. S., Ranganathan, T. V., Karanth, N. G. (2003). Some engineering aspects of solid-state fermentation. Biochemical Engineering Journal, 13: 127-135.
Ravindra, A. P. (2000). Value-added food: Single cell protein. Biotechnology Advances, 18: 459-479.
Reijnders, L., Soret, S. (2003). Quantification of the environmental impact of different dietary protein choices. The American Journal of Clinical Nutrition, 78: 66-68.
Ren, C., Tang, L., Zhang, M., Guo, S. (2009). Structural characterization of heat-induced protein particles in soy milk. Journal of Agricultural and Food Chemistry, 11: 1921-1926.
Rodrigues, F. H. S., Delgado, G. G., Costa, T. S., Tasic, L. (2023). Applications of fluorescence spectroscopy in protein conformational changes and intermolecular contacts. BBA Advances, 3: 100091.
Rodríguez, J. A., Lorenzo, J. M., Santos, E. M. (2023). Algae as a potential source of protein meat alternatives. Frontiers in Nutrition, 10: 1254300.
Rubio, N. R., Xiang, N., Kaplan, D. (2020). Plant-based and cell-based approaches to meat production. Nature Communications, 11: 6276.
Rumpold, B. A., Schlüter, O. K. (2013). Nutritional composition and safety aspects of edible insects. Molecular Nutrition & Food Research, 1: 155.
Safi, C., Charton, M., Ursu, A. V., Laroche, C., Zebib, B., Pontalier, P., Vaca-Garcia, C. (2014). Release of hydro-soluble microalgal proteins using mechanical and chemical treatments. Algal Research, 3: 55-60.
Salazar-López, N. J., Barco-Mendoza, G. A., Zuñiga-Martínez, B. S., Domínguez-Avila, J. A., Robles-Sánchez, R. M., Villegas Ochoa, M. A., González-Aguilar, G. A. (2022). Single-cell protein production as a strategy to reincorporate food waste and agro by-products back into the processing chain. Bioengineering, 9: 623.
Schmid, E. M., Farahnaky, A., Adhikari, B., Torley, P. J. (2022). High moisture extrusion cooking of meat analogs: A review of mechanisms of protein texturization. Comprehensive Reviews in Food Science and Food Safety, 21: 4573-4609.
Sharif, M., Zafar, M. H., Aqib, A. I., Saeed, M., Farag, M. R., Alagawany, M. (2021). Single cell protein: Sources, mechanism of production, nutritional value and its uses in aquaculture nutrition. Aquaculture, 531: 735885.
Shelar, G. A., Gaikwad, S. T. (2019). Extrusion in food processing: An overview. The Pharma Innovation Journal, 8: 562-568.
Shen, Y., Hong, S., Li, Y. (2022). Pea protein composition, functionality, modification, and food applications: A review. Advances in Food and Nutrition Research, 101: 71-127.
Siddiqui, S. A., Alvi, T., Sameen, A., Khan, S., Blinov, A. V., Nagdalian, A. A., Mehdizadeh, M., Adli, D. N., Onwezen, M. (2022). Consumer acceptance of alternative proteins: A systematic review of current alternative protein sources and interventions adapted to increase their acceptability. Sustainability, 14: 15370.
Singh, A., Abidi, A. B., Agrawal, A. K., Darmwal, N. S. (1991). Single cell protein production by Aspergillus niger and its evaluation. Zentralblatt für Mikrobiologie, 146: 181-184.
Singhania, R. R., Sukumaran, R. K., Patel, A. K., Larroche, C., Pandey, A. (2010). Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme and Microbial Technology, 46: 541-549.
Sosa-Morales, M. E., Solares-Alvarado, A. P., Aguilera-Bocanegra, S. P., Muñoz-Roa, J. F., Cardoso-Ugarte, G. A. (2022). Reviewing the effects of vacuum frying on frying medium and fried foods properties. International Journal of Food Science and Technology, 57: 3278-3291.
Spalvins, K., Zihare, L., Blumberga, D. (2018). Single cell protein production from waste biomass: Comparison of various industrial by-products. Energy Procedia, 147: 409-418.
Spiegel, M., Noordam, M. Y., Fels-Klerx, H. J. (2013). Safety of novel protein sources (Insects, Microalgae, Seaweed, Duckweed, and Rapeseed) and legislative aspects for their application in food and feed production. Comprehensive Reviews in Food Science and Food Safety, 12: 662-678.
Srilakshmi, A. (2020). Texture profile analysis of food and TPA measurements: A review article. International Research Journal of Engineering and Technology, 7: 23950056.
Suman, G., Nupur, M., Anuradha, S., Pradeep, B. (2015). Single cell protein production: A review. International Journal of Current Microbiology Applied Science, 4: 251-262.
Sun, D. Y., Zhang, B. W., Zhou, C. Y., Wang, B., Wu, M. (2023). Study on high moisture extruded pea protein isolate based on acid-induced process: Physicochemical properties, conformational changes and fibrous structure mechanism. Food Hydrocolloids, 141: 108746.
Sung, H. P., Buddhi, L., Balasubramaniam, V. M. (2014). Principles of food processing. in food processing: Principles and applications. West Sussex: John Wiley and Sons, 5: 1-15.
Talwar, R., Freymond, M, Beesabathuni, K., Lingala, S. (2024). Current and future market opportunities for alternative proteins in low- and middle-income countries. Current Developments in Nutrition, 8: 102035.
Tang, J. A., Zhu, X. L., Dong, G. Y., Hannon, S., Santos, H. M., Sun, D. W., Tiwari, B. K. (2024). Comparative studies on enhancing pea protein extraction recovery rates and structural integrity using ultrasonic and hydrodynamic cavitation technologies. LWT- Food Science and Technology, 200: 116130.
Tarahi, M., Abdolalizadeh, L., Hedayati, S. (2024). Mung bean protein isolate: Extraction, structure, physicochemical properties, modifications, and food applications. Food Chemistry, 444: 138626.
Teruel, M. R., García-Segovia, P., Martínez-Monzó, J., Linare, M. B., Garrido, M. D. (2014). Use of vacuum-frying in chicken nuggets processing, Innovative Food Science and Emerging Technologie, 26: 482-489.
Tian, T., Zhang, S., Qi, B., Wu, C., Zhou, Y., Li, L., Wang, Z., Li, Y. (2019). A study of structural change during In Vitro digestion of heated soy protein isolates. Foods, 20: 594.
Tian, X., Engel, B. A., Qian, H., Hua, E., Sun, S., Wang, Y. (2021). Will reaching the maximum achievable yield potential meet future global food demand? Journal of Cleaner Production, 294: 126285.
Tong, Q., Chen, L., Wang, W., Zhang, Z., Yu, X., Ren, F. (2018). Effects of konjac glucomannan and acetylated distarch phosphate on the gel properties of pork meat myofibrillar proteins. Journal of Food Science and Technology, 55: 2899-2909.
Toor, B. S., Kaur, A., Sahota, P. P., Kaur, J. (2021). Antioxidant potential, antinutrients, mineral composition and FTIR spectra of legumes fermented with Rhizopus oligosporus. Food Technology and Biotechnology, 413: 131515.
Ukaegbu-Obi, K. M. (2016). Single Cell Protein: A resort to global protein challenge and waste management. Journal of Microbiology & Microbial Technology, 1: 5.
Vandelook, S., Elsacker, E., Van Wylick, A., De Laet, L., Peeters, E. (2021). Current state and future prospects of pure mycelium materials. Fungal Biology and Biotechnology, 8: 20.
Vaidyanathan, S., Macaloney, G., Vaughan, J., McNeil, B., Harvey, L. M., (1999). Monitoring of submerged bioprocesses. Critical Reviews in Biotechnology, 19: 277-316.
Wainaina, S., Kisworini, A. D., Fanani, M., Wikandari, R., Millati, R., Niklasson, C., Taherzadeh, M. J. (2020). Utilization of food waste-derived volatile fatty acids for production of edible Rhizopus oligosporus fungal biomass. Bioresource Technology, 310: 123444.
Wang, H., Berg, F. W. J., Zhang, W., Czaja, T. P., Zhang, L. T., Jespersen, B. M., Lametsch, R. (2022a). Differences in physicochemical properties of high-moisture extrudates prepared from soy and pea protein isolates. Food Hydrocolloids, 128: 107540.
Wang, J., Huang, Z., Jiang, Q., Roubik, H., Xu, Q., Gharsallaoui, A., Cai, M., Yang, K., Sun, P. (2023). Fungal solid-state fermentation of crops and their by-products to obtain protein resources: The next frontier of food industry. Trends in Food Science & Technology, 138: 628-644.
Wang, Y. R., Wang, S. L., Luo, R. M. (2022b). Evaluation of key aroma compounds and protein secondary structure in the roasted Tan mutton during the traditional charcoal process, Frontiers in Nutrition, 9: 1003126.
Wang, K., Sun, D. W., Pu, H., Wei, Q. (2017). Principles and applications of spectroscopic techniques for evaluating food protein conformational changes: A review. Trends in Food Science & Technology, 67: 207-219.
Wang, Z. J., Li, Y., Jiang, L. Z., Qi, B. K., Zhou, L. Y. (2014). Relationship between secondary structure and surface hydrophobicity of soybean protein isolate subjected to heat treatment. Journal of Chemistry, 2014: 1-10.
Wardah, W., Khan, M. G., Sharma, A., Rashid, M. A. (2019). Protein secondary structure prediction using neural networks and deep learning: A review. Computational Biology and Chemistry, 81: 1-8.
Wei, C. L., Lu, W., Yang, J., Wang, M. P., Yang, X. Q., Wang, J. M. (2018). Physicochemical properties of soy protein prepared byenzyme-assisted countercurrent extraction. International Journal of Food Science and Technology, 53: 1389-1396.
Wiedemann, C., Kumar, A., Lang, A., Ohlenschläger, O. (2020). Cysteines and disulfide bonds as structure-forming units: Insights from different domains of life and the potential for characterization by NMR. Frontiers in Chemistry, 8: 280.
Wikandari, R., Tanugraha, D. R., Yastanto, A. J., Gmoser, R., Teixeira, J. A. (2023). Development of meat substitutes from filamentous fungi cultivated on residual water of tempeh factories. Molecules, 28: 997.
Wille, E. C. G., Bento, C. R. C. (2021). Filamentous fungi growth as metaphor for mobile communication networks pouting. Advances in Electrical and Computer Engineering, 21: 59-66.
Xia, S. G., Song, J., Li, K., Hao, T. T., Ma, C. X., Shen, S., Jiang, X. M., Xue, C. H., Xue, Y. (2023). Yeast protein-based meat analogues: Konjac glucomannan induces the fibrous structure formation by modifying protein structure. Food Hydrocolloids, 142: 108798.
Xiong, T., Xiong, W. F., Ge, M. T., Xia, J. H., Li, B., Chen, Y. J. (2018). Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate. Food Research International, 109: 260-267.
Yolmeh, M., Jafari, S. M. (2017). Applications of response surface methodology in the food industry processes. Food and Bioprocess Technology, 10: 413-433.
Yousufi, M. K. (2012). Impact of pH on the single cell protein produced on okara-wheat grit substrates using Rhizopus oligosporus and Aspergillus oryzae. Journal of Environmental Science, Toxicology and Food Technology, 1: 32-35.
Zahari, I., Östbring, K., Purhagen, J. K., Rayner, M. (2022). Plant-based meat analogues from alternative protein: A systematic literature review. Foods, 11: 2870.
Zepka, L. Q., Jacob-Lopes, E., Goldbeck, R., Souza-Soares, L. A., Queiroz, M. I. (2010). Nutritional evaluation of single-cell protein produced by Aphanothece microscopica Nägeli. Bioresource Technology, 101: 7107-7111.
Zhang, C., Wei, Y. M., Zhang, B., Kang, L. N. (2007). Effect of protein contents on the quality properties of texturized peanut protein products. Scientia Agricultura Sinica, 40: 1753-1759.
Zhang, J., Zhu, H. (2024). Finite element analysis as a promising approach for texture development of plant-based meat analogs. Physics of Fluids, 37: 031302.
Zhang, S., Sun, Y. J., Yong, C., Huang, P., Oladokun, M. O., Lin, Z. (2018). Response-surface-model-based system sizing for nearly/net zero energy buildings under uncertainty. Applied Energy, 228: 1020-1031.
Zhang, Y., Wang, B., Zhang, W., Xu, W., Hu, Z. (2019). Effects and mechanism of dilute acid soaking with ultrasound pretreatment on rice bran protein extraction. Journal of Cereal Science, 87: 318-324.
Zhang, X., Zhao, Y., Zhang, Y., Jiang, L., Sui, X. (2022). High moisture extrusion of soy protein and wheat gluten blend: An underlying mechanism for the formation of fibrous structures. LWT- Food Science and Technology, 163: 113561.
Zhang, X. Y., Liu, Z, Ma, X. J., Zheng, Y. C., Hu, H., Jiao, B., McClements, D. J., Wang, Q., Shi, A. (2025). Interfacial and foaming properties of plant and microbial proteins: Comparison of structure-function behavior of different proteins. Food Chemistry, 463: 131431.
Zhao, Q., Ding, L., Xia, M., Huang, X., Isobe, K., Handa, A., Cai, Z. (2021). Role of lysozyme on liquid egg white foaming properties: Interface behavior, physicochemical characteristics and protein structure. Food Hydrocolloids, 120: 106876.
Zhao, X., Vazquez-Gutierrez, J. L., Johansson, D. P., Landberg, R., Langton, M. (2016). Yellow mealworm protein for food purposes - Extraction and functional properties. PLoS One, 11: e0147791.
Zhao, D., Huang, L., Li, H., Ren, Y., Cao, J., Zhang, T., Liu, X. (2022). Ingredients and process affect the structural quality of recombinant plant-based meat alternatives and their components. Foods, 11: 2202.
Zhao, Y., Sun, N., Li, Y., Cheng, S., Jiang, C., Lin, S., (2017). Effects of electron beam irradiation (EBI) on structure characteristics and thermal properties of walnut protein flour. Food Research International, 100: 850-857.
校內:2030-08-27公開