簡易檢索 / 詳目顯示

研究生: 邱聖芫
Chiou, Sheng-Yuan
論文名稱: 以側向磊晶結構調控鑭鈣錳氧之龐磁阻特性
Controlling the colossal magnetoresistance of LCMO using weave epitaxy
指導教授: 楊展其
Yang, Jan-Chi
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 46
中文關鍵詞: 龐磁阻鑭鈣錳氧側向磊晶
外文關鍵詞: colossal magnetoresistance, La1-xCaxMnO3, weave epitaxy
相關次數: 點閱:38下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 龐磁阻 ( Colssal magnetoresistance, CMR ) 材料因在外加磁場下,電阻值變化的特性使得他在許多磁性材料中脫穎而出,在研究上具有豐富的潛力,至今仍為熱門的研究對象。獨立自支撐技術 ( Freestanding, FS ) 這項技術可以使二維材料脫離原本磊晶基板,使材料在應用以及開發上更加靈活。從先前的研究中發現,鑭鈣錳氧 ( La1-xCaxMnO3, LCMO ) 薄膜的磁阻 ( Magnetoresistance, MR ) 效應會受到基板對薄膜造成的應力影響產生變化,薄膜的厚度則會影響相變溫度。結合應力的影響以及FS,本實驗提供了一個方法,藉由FS先將特定厚度的LCMO薄膜取下並轉移至鋁酸鑭 ( LaAlO3, LAO ) 基板,並在此之上進行薄膜磊晶,便能得到兩種受不同應力影響的LCMO薄膜組合,並對這種側向磊晶的結構進行電性的量測。經過量測後我們發現,LCMO的磁阻最高可到-340%,而且樣品出現了兩個相變點。磁阻的提升與相變點的增加有助於拓展這個材料的應用空間。我們的實驗結果提供了一個未來研究LCMO及龐磁阻的新方向。

    Lanthanum manganite (La1-xCaxMnO3, LCMO) has attracted much attention due to its strongly correlated systems with strong interplays among charge, spin, orbital, and lattice degrees of freedom, such as colossal magnetoresistance (CMR). From the previous researches, it is believed that lattice parameters of LCMO and CMR properties can be influenced by substrate-induced strains. In this work, we demonstrate a way to combine two different strained LCMO via Freestanding (FS) technique. The resistance-temperature (R-T) curve exhibits two different transition points, and the highest Magnetoresistance (MR) is -340%. Our result provides a new pathway to study in the CMR and LCMO.

    摘要 I 圖目錄 XIV 第一章.緒論 1 第二章.文獻回顧 2 2.1. 獨立自支撐技術簡介 2 2.2. 龐磁阻簡介 4 2.3. 鑭鈣錳氧簡介 7 第三章.實驗原理與方法 9 3.1. 脈衝雷射沉積系統 9 3.2. 獨立自支撐薄膜技術之流程 12 3.3. X光繞射分析 14 3.4. 光學微影技術 19 3.5. 四點探針量測技術 20 3.6. 穿透式電子顯微鏡 22 3.7. 樣品製備與量測 24 第四章.結果與討論 27 4.1. LCMO之XRD分析 27 4.2. LCMO之TEM分析 32 4.3. LCMO之電性分析 33 4.4. LCMO之磁阻分析 40 4.5. 量測結果之討論 42 結論 44 參考文獻 45

    1. D Das. et al. "Magnetic and electrical transport properties of La0.67Ca0.33MnO3 (LCMO):xZnO composites". Journal of Physics: Condensed Matter. 16 4089, 2004.
    2. Liu Yu-Kuai. et al. "Colossal magnetoresistance in manganites and related prototype devices". Chinese Physics B. 22 087502, 2013.
    3. Xuepeng Yin. et al. "Preparation of La0.67Ca0.33MnO3:Ag x polycrystalline by sol–gel method". Journal of Sol Gel Science and Technology. 70, 361-365, 2014.
    4. Y. P. Lee. et al. "Microstructural and magnetotransport properties of La0.7Ca0.3Mn03/BaTiO3 and La0.7Sr0.3MnO3/BaTiO3 bilayered films". Physic Review B 73, 224413, 2006.
    5. H.D. Espinosa ; "Bei Peng. A new methodology to investigate fracture toughness of freestanding MENS and advanced materials in thin film form". Journal of Microelectromechanical System 14, 1, 153-159, 2005.
    6. Rouhollah Dermanaki Farahani. et al. "Direct-write fabrication of freestanding nanocomposite strain sensors". Nanotechnology 23 085502, 2012.
    7. Saidur Rahman Bakaul. et al. "Single crystal functional oxides on silicon". Nature Communications 7. 10547, 2016.
    8. Chun-Chien Chiu. et al. "Presence of Delocalized Ti 3d Electrons in Ultrathin Single-Crystal SrTiO3". Nano Letters 22. 1580-1586, 2022.
    9. Yunjo Kim. et al. "Remote epitaxy through graphene enables two-dimensional material- based layer transfer". Nature 544. 340-343, 2017.
    10. Hyun S. Kum. et al. "Heterogeneous integration of single-crystalline complex-xoide membranes". Nature 578. 75-81, 2020.
    11. Di Lu. et al. "Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers". Nature Materials 15. 1255-1260, 2016.
    12. Thomson, W. "On the Electro-Dynamic Qualities of Metals:—Effects of Magnetization on the Electric Conductivity of Nickel and of Iron". Proceedings of the Royal Society of London. 8. 546-550, 1857.
    13. H. A. Jahn. et al. "Stability of polyatomic molecules in degenerate electronic states II-Spin degeneracy". Proceedings of the Royal Society of London. Series A. 161 905 220-235, 1938.
    14. A-M Haghiri-Gosnet. et al. "CMR manganites: physics, thin films and devices". Journal of Physics D: Applied Physics. 36 R127-R150, 2003.
    15. E L Nagaev. "Lanthanum manganites and other giant-magnetoresistance magnetic conductors". Physics-Uspekhi. 39(8) 781-805, 1996.
    16. Sunita Keshri(Shaw). et al. "Influence of BTO phase on structural, magnetic and electrical properties of LCMO". Journal of Alloys and Compounds. 485. 501-506, 2009.
    17. Hirotaka Nishioka. et al. "Electronic coupling calculation and pathway analysis of electron transfer reaction using ab initio fragment-based method. I. FMO-LCMO approach". The Journal of Chemical Physics. 134. 204109, 2011.
    18. T. Y. Koo. et al. "Anisotropic strains and magnetoresistance of La0.7Ca0.3MnO3". Applied Physics Letters. 71 977, 1997.
    19. P K Siwach. et al. "Influence of strain relaxation on magnetotransport properties of epitaxial La0.7Ca0.3MnO3 films". Journal of Physics: Condensed Matter. 18. 9783-9794, 2006.
    20. S. Valencia. et al. "Thickness dependence of the magnetic anisotropy in La2/3Ca1/3MnO3 thin films grown on LaAlO3 substrates". Journal of Applied Physics. 93, 8059, 2003.
    21. Howard M. Smith & A. F. Turner. "Vacuum Deposited Thin Films Using a Ruby Laser". Applied Optics. Vol. 4, Issue 1, pp. 147-148, 1965.
    22. D. Dijkkamp. et al. "Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material". Applied Physics Letters. 51, 619, 1987.
    23. Louis de Broglie. "The reinterpretation of wave mechanics". Foundations of Physics 1, 5-15, 1970.
    24. Lord Rayleigh, F.R.S. "Investigations in optics, with special reference to the spectroscope". Philosophical Magazine. 5, 8 (49): 261-274, 1879.

    下載圖示 校內:2025-02-01公開
    校外:2025-02-01公開
    QR CODE