簡易檢索 / 詳目顯示

研究生: 林宜學
Lin, Yi-Shiue
論文名稱: 雙官能基分子在Cu(100)上的表面化學與理論研究
Surface Chemistry and Theoretical Investigation of Bifunctional Molecules on Cu(100)
指導教授: 林榮良
Lin, Jong-Liang
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 152
中文關鍵詞: 程序控溫反應/脫附反射式吸收紅外光譜X-光光電子光譜
外文關鍵詞: TPR/D, PAIRS, XPS, Cu(100)
相關次數: 點閱:144下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要藉由程序控溫反應/脫附(temperature-programmed reaction/desorption, TPR/D)、反射式吸收紅外光譜 (reflection-absorption infrared spectroscopy, RAIRS)、X-光光電子光譜 (x-ray photoelectron spectroscopy, XPS) 探討在超高真空系統中,雙官能基分子,HOCH2CH2NH2、ICH2COOH與ICH2CN,在Cu(100)表面上的吸附以及熱反應,再藉由密度泛函理論 (density functional theory, DFT) 預測反應中間物之結構以及可能的反應路徑和能量。
    Cu(100)表面上,單層與多層的HOCH2CH2NH2分子脫附峰溫度分別為255與203 K。由RAIRS結果推測多層與單層分子可能以不同的HOCH2CH2NH2 旋轉異構物形式吸附於Cu(100)表面。於 ~240 K時,脫附與分解會同時發生。HOCH2CH2NH2在Cu(100)表面上的分解路徑,可能是先失去一個氫原子而形成-OCH2CH2NH2,接著再轉變成HOCH2CH2N=。這個HOCH2CH2N=中間物約在400 K分解生成H2與H2O。
    ICH2COOH在230 K的Cu(100)表面上會分解產生CH2COO與CH3COO,增溫至300 K時,所有的CH2COO會轉變成CH3COO,這是CH2COO與羧酸斷O-H鍵所生之表面H結合的產物。CH3COO於550 K以上會分解成-C≡COH表面中間物以及脫附H2、CH4、H2O、CO、 CO2、CH2CO、與 CH3COOH等氣相產物,密度泛函理論計算預測 CH2COO 吸附結構之 CCOO 平面幾乎與表面平行並且CCOO骨架上有delocalized π電子。-C≡COH吸附於bridge與hollow site的穩定性相似並且CCO分子軸基本上垂直於表面。-C≡COH於600-700 K之間會再分解產生H2與CO。
    ICH2CN在Cu(100)表面上的分解可得CH2CN、CHCN、CCN和CN的表面中間物。這些表面物種的存在和反應導致下列分子的脫附:H2、HCN、CH3CN與C2N2。CH3CN呈現複雜脫附形態,是來自CH2CN的不勻稱 (disproportiontion) 與氫化反應。HCN的形成是多個基本反應步驟的產物 (CHCN → CCN + H → CCHN → C + HCN)。C2N2形成機制則是CCN斷C-C鍵而產生C與CN,然後CN(a)再偶合。理論計算預測低覆蓋率的CH2CN與CHCN之吸附結構皆以CCN骨架幾乎與表面平行。

    The adsorption and thermal chemistry of the bifunctional molecules, HOCH2CH2NH2, ICH2COOH and ICH2CN, on Cu(100) have been studied in ultra-high vacuum system by a combination of temperature-programmed reaction/desorption (TPR/D), reflection-absorption infrared spectroscopy (RAIRS), and X-ray photoelectron spectroscopy (XPS), with the aid of theoretical calculations based on density functional theory for prediction of reaction intermediate structures, reaction paths and eneretics.
    In the case of HOCH2CH2NH2 on Cu(100), the molecular desorption from the multilayer and monolayer occurs at 203 and 255 K, respectively. The HOCH2CH2NH2 molecules present in the multilayer and monolayer are adsorbed with different conformations. Desorption and decomposition of HOCH2CH2NH2 molecules on Cu(100) can occur at ~ 240 K simultaneously. In the decomposition process of HOCH2CH2NH2 on Cu(100), it may first lose a hydrogen atom to form -OCH2CH2NH2, which then transforms into HOCH2CH2N=. Further decomposition of HOCH2CH2N= at ~400 K results in the desorption of H2 and N2.
    ICH2COOH decomposes on Cu(100) at 230 K into the surface intermediates of CH2COO and CH3COO. As the surface is heated to 300 K, all the residual CH2COO molecules change to CH3COO, which is the result due to recombination of CH2COO with the H atoms from deprotonation of the -COOH group. CH3COO decomposes at ~550 K to produce CCOH surface intermediate and the gaseous products of H2, CH4, H2O, CO, CO2, CH2CO and CH3COOH. CCOH decomposes to generate H2 and CO2 at 600-700 K. CH2COO, with a delocalized π-system, is predictes to be adsorbed with the skeletal CCOO plane approximately parallel to the surface. -C≡COH adsorbed on the bridge site and hollow site has a similar stability, with molecular CCO axis is basically perpendicular to the surface.
    On Cu(100), ICH2CN decomposes to generate the surface intermediates: CH2CN, CHCN, CCN and CN. The further reactions of these surface species lead to the desorption of CH3CN, H2, HCN and C2N2. CH3CN show a complex desorption behavior form CH2CN disproportionation and hydrogenation. HCN is a resultant product of multiple elemental steps: CHCN → CCN + H → CCHN → C + HCN. C2N2 result from recombination of CN groups which is the reaction product of CCN by C-C bond scission. Both the CH2CN and CHCN are predicted to be adsorbed with the CCN backbones approximately parallel to the surface at a low conerage.

    第一章 緒論.................................................1 1-1 表面催化發展簡介.........................................1 1-2 表面吸附................................................2 1-3固體表面模型.............................................3 1-4計算化學.................................................6 1-5研究動機.................................................8 1-6 參考文獻...............................................10 第二章密度泛函理論背景介紹...................................11 2-1密度泛函理論 (Density Functional Theory)................11 2-1-1局部密度近似法 (Local Density Approximation, LDA).....13 2-1-2廣義梯度近似法(Generalized Gradient Approximation, GGA).................................................14 2-2 幾何最佳化 (Geometry Optimization).....................17 2-2-1最陡峭下降 (Steepest Descents)法......................17 2-2-2共軛梯度 (Conjugate Gradient)法.......................20 2-2-3牛頓-拉夫遜 (Newton-Raphson)法........................22 2-3搜尋過渡態與反應路徑的理論與方法...........................24 2-3-1尋找過渡態............................................24 2-3-2 反應路徑.............................................26 2-4 DMol3基本介紹..........................................28 2-4-1基組 (Basis).........................................28 2-4-2內層電子的處理 (Core electron treatment)..............30 2-4-3 泛函數 (Functional).................................31 2-5參考文獻...............................................33 第三章 實驗系統與理論計算方法................................35 3-1 實驗部分..............................................35 3-1-1超高真空系統..........................................35 3-1-2 表面分析技術及儀器裝置................................37 3-1-3 單晶表面的清潔.......................................50 3-1-4 藥品的處理...........................................51 3-2 理論計算方法...........................................52 3-2-1 執行DMol3之基本步驟..................................53 3-2-2 單點能量計算.........................................54 3-2-3 幾何最佳化計算.......................................56 3-2-4 尋找過渡態之計算......................................57 3-2-5反應路徑計算..........................................59 3-3參考文獻................................................60 第四章 HOCH2CH2NH2在Cu(100)單晶表面上的吸附與分解所 產生的中間體之理論預測................................61 4-1 前言..................................................61 4-2 結果與討論.............................................63 4-2-1 HOCH2CH2NH2分子在Cu(100)表面上的脫附..................63 4-2-2 HOCH2CH2NH2多層(>1.0 L)分子的吸附、分解與中間 物預測..............................................65 4-2-3 HOCH2CH2NH2低於單層(<1.0 L)時分子的吸附、分解 與中間物預測.........................................80 4-3 結論..................................................83 4-4 參考文獻...............................................84 第五章 ICH2COOH在CU(100)表面上的反應路徑與表面中間物之 鑑定................................................86 5-1 前言..................................................86 5-2 ICH2COOH暴露量小於或接近半層(0.5 Monolayer)時分子 的反應路徑與中間物預測...................................88 5-2-1 CH3COO與CCOH表面中間物之形成..........................88 5-2-2 CH2COO與CH3COO表面中間物之形成.......................102 5-3 結論.................................................109 5-4 參考文獻..............................................110 第六章 ICH2CN在Cu(100)表面上的反應與理論研究................112 6-1 前言.................................................112 6-2 ICH2CN在Cu(100)表面上的吸附與反應......................114 6-3 ICH2CN分解所產生的表面中間物探討........................118 6-4理論預測CH2CN與CHCN在Cu(100)表面上的反應路徑.............127 6-4-1 CH3CN的形成機制.....................................127 6-4-2 HCN的形成機制.......................................130 6-4-3 C2N2的形成機制......................................131 6-5 結論.................................................137 6-6 參考文獻..............................................139 第七章 總結論.............................................141 7-1 HOCH2CH2NH2在Cu(100)表面上的研究......................141 7-2 ICH2COOH在Cu(100)表面上的研究.........................142 7-3 ICH2CN在Cu(100)表面上的研究...........................142 附錄一 理論預測HOCH2CH2NH-/Cu(100)之結構、振動頻率(cm-1) ........................................................144 附錄二 理論預測-CH2CH2NH2、-CH2CH2NH-與-CH2CH2N-在 Cu(100) 表面之吸附結構與振動頻率(cm-1)...............145 附錄三 理論預測-CH2NH2、-CH2NH-、-N=CH2、-CH=NH、 -CH2O-與-CH2OH在Cu(100)表面之吸附結構與振動 頻率(cm-1)........................................148

    第一章
    [1]Somorjai, G. A. Introduction to Surface Chemistry and
    Catalysis, Wiley & Sons, New York, 1994.
    [2]Gregg, S. J.; Sing, K. S. Adsorption, Surface Area and
    Porosity, Academic Press, New York, 1967.
    [3]Vickerman, J. C. Surface Analysis, Wiley & Sons, New
    York, 1997.
    [4]Whitten, J. L.; Yang, H. Surf. Sci. Rep., 24, 55, 1996.
    [5]Bernardo, C. G. P. M.; Gomes, J. A. N. F. J. Mol.
    Struct.: Theochem, 629, 251, 2003.
    [6]Au, C. T. ; Chen, M. D. Chem. Phys. Lett., 278, 238,
    1997.
    [7]Li, Y.; Hu, J. M.; Zhang, Y. F.; Li, J. Q. Appl. Sur.
    Sci., 252, 5636, 2006.
    [8]Minot, C.; Markovits, A. J. Mol. Struct., 424, 119, 1998.
    [9]van Santen, R.A. J. Mol. Catal. A: Chem., 115, 405, 1997.
    [10]Whitten, J. L. Chem. Phys., 177, 387, 1993.
    [11]Govind, N.; Wang, Y.A.; Carter, E. A. J. Chem. Phys.,
    110, 7677, 1999.

    第二章
    [1]Hohenberg, P.; Kohn, W. Phys. Rev. B, 136, 864, 1964.
    [2]Hedin, L.; Lundqvist, B. I. J. Phys. C, 4, 2064, 1971.
    [3]Ceperley, D. M.; Alder, B. J. Phys Rev. Lett., 45, 566,
    1980.
    [4]Lundqvist, S.; March, N. Theory of the Inhomogeneous
    Electron Gas, New York, 1983.
    [5]Slater, J. C. Phys. Rev., 81, 385, 1951.
    [6]Vosko, S. J.; Wilk, L.; Nusair, M. Can. J. Phys., 58,
    1200, 1980 .
    [7]Von Barth, U.; Hedin, L. J. Phys. C, 5, 1629, 1972.
    [8]Janak, J. F.; Morruzi, L.; Williams, A. R. Phys. Rev. B,
    12, 1257, 1975.
    [9]Perdew, J. P.; Wang, Y. Phys. Rev. B, 45, 13244, 1992.
    [10]Ziegler, T. Chem. Rev., 91, 651, 1991.
    [11]Labanowski, K.; Andzelm, J. Density Functional Methods
    in Chemistry, New York, 1991.
    [12]Politzer, P.; Seminario, J. M. Density Functional
    Theory: A Tool for Chemistry, Amsterdam, 1995.
    [13]Kohn, W.; Sham, L. J Phys. Rev. A, 140, 1133, 1965.
    [14]Andzelm, J.; Wimmer, E.; Salahub, D. R. ACS Symp. Ser.
    394, 1989.
    [15]Versluis, L.; Ziegler, T. J. Chem. Phys., 88, 322, 1988.
    [16]Ashcroft, N. W.; Mermin, N. D. Solid State Phys.113,
    1976.
    [17]Levitt, M.; Lifson, S. J. Mol. Biol. 46, 269, 1969.
    [18]Fletcher, R.; Reeves, C. M. Comput. J. 7, 149, 1964.
    [19]Ermer, O. Struct. Bond. 27, 161, 1976.
    [20]Foresmn, J. B.; Frisch, E. Exploring Chemistry with
    Electronic Structure Methods, Gaussian, Inc, USA, 1996.
    [21]Henkelman, G.; Jonsoon, H. J. Chem. Phys. 113, 9978,
    2000.
    [22]Koelling, D. D.; Harmon, B. N. J. Phys. C: Solid State
    Phys. 10, 3107, 1977.
    [23]Delley, B. Phys. Rev. B 66, 155125, 2002.
    [24]Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. J. Chem.
    Phys. 86, 866, 1987.

    第三章
    [1]張沛騰碩士論文,國立成功大學化學所,2003.
    [2]Redhead, P. A. Vacuum, 12, 203, 1962.
    [3]Lin, J. L. Carbon-Halogen Bond Dissociation at Copper
    Surface: Alkyl Radicals versus Metal Alkyls, Columbia
    University, P29-30, 1993.
    [4]Vickerman, J. C. Surface Analysis-The Principle
    Techniques, Wiley& Sons, New York, 1997.
    [5]Auger, P. J. Phy. Radium, 6, 205, 1925.
    [6]Ertl, G.; Kuppers, J. Low Energy Electrons and Surface
    Chemistry, Verlag Chemie, Germany, 22, 1974.

    第四章
    [1]Zare A., H.; Mirzaei, S. World Academy of Science,
    Engineering and Technology, 49, 194, 2009.
    [2]Huttenhuis, P. J. G.; Agrawal, N. J.; Hogendoorn, J. A.
    J. Petrol. Sci. Eng., 55, 122, 2007.
    [3]Mandal, B. P; Bandyopadhyay, S. S. Chem. Eng. Sci., 60,
    6438, 2005.
    [4]Mandal, B. P.; Biswas, A. K.; Bandyopadhyay, S. S. Sep.
    Purif. Technol., 35, 191, 2004.
    [5]Meeker, K; Ellis, A. B. J. Phys. Chem. B,103, 995, 1999.
    [6]Straziser, B. R.; Anderson, R. R.; White, C. M. Energy
    Fuels, 17, 1034, 2003.
    [7]Goff, G. S.; Rochelle, G. T. Ind. Eng. Chem. Res., 45,
    2513, 2006.
    [8]Madix, M. Y.; Yamada, T.; Johnson, S. W. Appl. Surf.
    Sci.,19, 43, 1984.
    [9]Lin, Y.-S.; Wang, C.-Y.; Yang, C.-M.; Lin, J.-S.; Kuo,
    C.-W.; Lin, J.-L. J. Phys. Chem. C, 112, 8304, 2008.
    [10]Redhead, P. A., Vacuum, 2, 203,1962.
    [11]Da Silva, E. F.; Kuznetosva, T.; Kvamme, B.; Merz, K.
    M., J. Phys.Chem. B, 111, 3695, 2007.
    [12]Silva, C. F. P.; Durate, M. T. S.; Fausto, R. J. Mol.
    Struct., 482,591, 1999.
    [13]Vorobyov, I.; Yappert, M. C.; Dupre, D. B. J. Phys.
    Chem. A, 106, 668, 2002.
    [14]Mootz, D.; Brodalla, D.; Wiebeke, M. Acta Crystallogr.,
    C45, 754, 1989.
    [15]Eills, T. H.; Kruus, E. J.; Wang, H. J. Vac. Sci.
    Technol. A, 11, 2117, 1993.
    [16]Chang, P. T.; Shih, J.-J.; Kuo, K.-H.; Chen, C.-Y.; Fu,
    T.-W.; Shieh,D.-L.; Liao, Y.-H.; Lin, J.-L. J. Phys.
    Chem. B, 108, 13320, 2004.
    [17]Thornburg, D. M.; Madix, R. J. Surf. Sci., 226, 61,
    1990.

    第五章
    [1]Schröder, D.; Goldberg, N.; Zummack, W.; Schwarz, H.;
    Poutsma, J. C.; Squires, R. R. Int. J. Mass Spectrom.
    Ion Processes, 165/166, 71, 1997.
    [2]Cannon, J. R.; Edmonds, J. S.; Francesconi, K. A.;
    Raston, C. L.; Saunders, J. B.; Skelton, B. W.; White,
    A. H. Aust. J. Chem., 34, 787, 1981.
    [3]Yamaguchi, T.; Sasaki, Y.; Ito, T. J. Am. Chem. Soc.,
    112, 4038, 1990.
    [4]Lin, J.-L.; Bent, B. E. J. Phys. Chem., 96, 8529, 1992.
    [5]Sexton, B. A. J. Vac. Sci. Technol., 17, 141,1980.
    [6]Bowker, M.; Madix, R. J. Appl. Surf. Sci., 8, 299. 1981.
    [7]York, S. M.; Hag, S.; Kilway, K. V.; Phillips, J. M.;
    Leibsle, F. M. Surf. Sci., 522, 34, 2003.
    [8]Sexton, B. A. Chem. Phys. Lett., 65, 469, 1979.
    [9]Surman, M.; Lackey, D.; King, D. A. J. Electron
    Spectrosc. Relat. Phenom., 39, 245, 1986.
    [10]Burneau, A.; Genin, F.; Quiles, F. Phys. Chem. Chem.
    Phys., 2, 5020,2002.
    [11]Borguet, E.; Dai, H. L. J. Chem. Phys., 101, 9080, 1994.
    [12]Dvorak, J.; Hrbek, J. J. Phys. Chem. B, 102, 9443, 1998.
    [13]Sim, W. S.; King, D. A. J. Phys. Chem., 100, 14794,
    1996.
    [14]Hochstrasser, R.; Wirz, J. Angew. Chem., Int. Ed.
    Engl., 29, 411, 1990.
    [15]Sim, W. S.; Gardner, P.; King, D. A. J. Phys. Chem.,
    100, 12509, 1996.
    [16]Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic
    Chemistry: Principles of Structure and Reactivity, 4th
    ed.; Baker & Taylor Books: Bridgewater, NJ, 1997.
    [17]Liao, Y.-H.; Chen, C.-Y.; Fu, T.-W.; Wang, C.-Y.; Fan,
    L.-J.; Yang,Y.-W.; Lin, J.-L. Surf. Sci., 600, 417,
    2006.
    [18]Lin, J.-L.; Bent, B. E. J. Am. Chem. Soc., 115, 6943,
    1993.
    [19]Vickerman, J. C. Surface Analysis; John Wiley & Sons:
    New York, 1997.

    第六章
    [1]Lin, J. L.; Bent, B. E. J. Am .Chem. Soc., 115, 2849,
    1993.
    [2]Lin, J. L.; Bent, B. E. J. Phys. Chem., 97, 9713, 1993.
    [3]Capote, A. J.; Hamza, A. V.; Canning N. D. S.; Madix, R.
    J. Surf. Sci., 175, 445,1986.
    [4]Sault, A. G.; Madix, R. J. J. Mol. Catal., 52, 211, 1989.
    [5]Sexton, B. A.; Avery, N. R. Surf. Sci., 129, 21, 1983.
    [6]Ou, E. C.; Young, P. A.; Norton, P. R. Surf. Sci., 277,
    123, 1992.
    [7]Friend, C. M.; Muetterties, E. L.; Gland, J. L. J. Phys.
    Chem., 85, 3256, 1981.
    [8]Murphy, K.; Azad, S.; Bennett, D. W.; Tysoe, W. T. Surf.
    Sci., 467, 1, 2000.
    [9]Solomun, T.; Christmam, K.; Baumgartel, H. J. Phys.
    Chem.,93, 7199, 1989.
    [10]Pearlstine, K. A.; Friend, C. M. J. Phys. Chem., 90,
    4344, 1986.
    [11]Friend, C. M.; Serafin, F. G. J. Chem. Phys., 88, 4037,
    1988.
    [12]Stevens, P. A.; Madix, R. J.; Stöhr, J. J. Chem. Phys.,
    91, 4338, 1989.
    [13]Lin, J. L.; Bent, B. E. J. Phys. Chem., 96, 8529, 1992.
    [14]Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic
    Chemistry: Principles of Structure and Reactivity, 4th
    ed.; Baker&Taylor Books: Bridgewater, NJ, 1997.
    [15]Jones, R. G.; Orville-Thomas, W. J. J. Chem. Soc.,
    4635, 1965.
    [16]Vickerman, J. C. Surface Analysis: The Principia
    Techniques, John Willy & Sons, Chichester, England,
    1997.
    [17]Chiang, C.-M.; Wentzlaff, T. H.; Bent, B. E. J. Phys.
    Chem., 96, 1836, 1992.
    [18]Carley, A. F.; Chinn, M.; Parkinson, C. R. Sur. Sci.,
    537, 64, 2003.
    [19]Anger, G.; Winkler, A.; Rendulic, K. D. Surf. Sci.,
    220, 1, 1989.
    [20]Lloyd, P. B.; Swaminathan, M.; Kress, J. W.; Tatarchuk,
    B. J. Appl. Surf. Sci., 119, 267, 1997.
    [21]Kolovos-Vellianitis, D.; Kammler, Th.; Küppers, J.
    Surf. Sci., 454-456, 316, 2000.
    [22]Redhead, P.A. Vacuum, 2, 203, 1962.
    [23]Outka, D. A.; Jorgensen, S. W.; Friend, C. M.; Madix,
    R. J. J Mol. Catal., 21, 375, 1983.
    [24]Solymosi, F.; Berko, A. Surf. Sci., 122, 275, 1982.
    [25]Solymosi, F.; Kiss, J. Surf. Sci., 108, 368, 1981.

    無法下載圖示 校內:2016-07-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE