| 研究生: |
葉惠祿 Yasaputera, Robert |
|---|---|
| 論文名稱: |
使用球形鋁粉燃燒合成及量產氮化鋁製程開發 Process Development for Combustion Synthesis and Scale-up Production of Aluminum Nitride Using Spherical Aluminum Powder |
| 指導教授: |
鍾賢龍
Chung, Shyan-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 94 |
| 外文關鍵詞: | Combustion synthesis, Aluminum Nitride, Urea additive, Al(OH)3 additive, NH4Cl Additive, Aluminum Nitride diluent. |
| 相關次數: | 點閱:58 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The technique for the synthesis of aluminum nitride powder by self-propagating high-temperature synthesis (SHS) has been well developed in our laboratory. The mostly used aluminum powder for the synthesis has been flake in shape with dimensions of 1 mm x 1 mm x 25 μm, and a purity of 99.9 %. This aluminum powder has a high purity and a good reactivity but is relatively costly. In order to reduce the production cost and avoid the monopolization of the source of aluminum powder, we searched for other sources for aluminum powder. In this research, we focused on the synthesis of aluminum nitride powder by using the new, spherical aluminum powder with 21 μm in size combinations (d50). Different nitrogen gas pressure and several additives, including aluminum nitride, urea, Al(OH)3, and NH4Cl, with different amounts and sizes, and there were tested in order to improve the aluminum nitride conversion. The combustion phenomena were also found to be affected by the types, amounts and the size of the additives. An increased of aluminum nitride conversion was synthesized using urea additive with certain amounts and smaller additive size. Using other additive, such as Al(OH)3, results in a poor reactivity to nitridation due to the fine Al2O3 formed after the thermal decomposition of the additive, while using NH4Cl as additive results in an incomplete combustion reaction, and it is speculated because of the ammonium azide formed as a candidate material to hindered further nitridation. Several parameters that were tested in this study, such as different nitrogen pressure, additives amount, and additives size indicating the poor reactivity of the new spherical aluminum powder. It is speculated that the phenomenon also caused by the high reactant packing density of the powder.
For a small scale production (146.6g AlN per batch), highest conversion achieved was around 99.35% by using AlN (with AlN:Al ratio of 10:90), urea (1wt%) as additives, and under 10 atm of nitrogen pressure. For a large scale production (4.7 kg AlN per batch), due to the poor reactivity and high packing density of the aluminum powder, incomplete combustion with low conversion of aluminum nitride was observed.
1. 汪建民, 陶瓷技術手冊Ceramic technology handbook, 中華民國產業科技發展協會, pp.781-783, 1994.
2. H. K. Sander, “High-tech ceramics,” in C&E News, ed, July 9, 1984.
3. 吳朗, 電子陶瓷-入門, 1992.
4. N. Kuramoto, H. Taniguchi, and I. Aso, “Development of translucent aluminum nitride ceramics”, American Ceramic Society Bulletin, Vol.68, No.4, pp.883-887, 1989.
5. L. M. Sheppard, “Aluminum nitride. A versatile but challenging material”, American Ceramic Society Bulletin, Vol.69, No.11, pp.1801-1812, 1990.
6. J. C. Nipko and C.-K. Loong, “Phonon excitations and related thermal properties of aluminum nitride”, Physical Review B, Vol.57, No.17, pp.10550-10554, 1998.
7. G. A. Slack, R. A. Tanzilli, R. O. Pohl, and J. W. Vandersande, “The intrinsic thermal conductivity of AlN”, Journal of Physics and Chemistry of Solids, Vol.48, No.7, pp.641-647, 1987.
8. E. Man, F. Yan, Ame. Cera. Soc., Inc. Vol.26, pp.19-54, 1994.
9. F. Miyashiro, N. Iwase, A. Tsuge, F. Ueno, M. Nakahashi, and T. Takahashi, “High thermal conductivity aluminum nitride ceramic substrates and packages”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol.13, No.2, pp.313-319, 1990.
10. 林正雄, “使用氮化鋁及氮化硼填充 以提升環氧樹脂熱傳導性之研究”, 國立成功大學博士論文, 2017.
11. T. Watari, T. Akizuki, H. Ikeda, T. Torikai, and O. Matsuda, “Shape of AlN powders prepared by vapor phase reaction of AlCl3·NH3- NH3-N2 system”, Journal of the Ceramic Society of Japan, Vol.97, No.8, pp.864-867, 1989.
12. G. Selvaduray and L. Sheet, “Aluminum nitride-review of synthesis methods”, Materials Science and Technology, Vol.9, No.6, pp.463-473, 1993.
13. F. J.-H. Haussonne, “Review of the synthesis methods for AlN”, Materials and Manufacturing Processes, Vol.10, No.4, pp.717-775, 1995.
14. N. Kuramoto and H. Taniguchi, “Fine powder of aluminum nitride, composition and sintered body thereof and processes for their production”, U.S. Patent No.4,618,592, 1986.
15. R. Bachelard and P. Joubert, “Aluminum Nitride by Carbothermal Nitridation”, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, Vol.109, pp.247-251, Mar 1989.
16. T. Okada, M. Toriyama, and S. Kanzaki, “Synthesis of aluminum nitride sintered bodies using the direct nitridation of Al compacts”, Journal of the European Ceramic Society, Vol. 20, No.6, pp.783-787, May 2000.
17. K. G. Nickel, R. Riedel, and G. Petzow, “Thermodynamic and Experimental Study of High-Purity Aluminum Nitride Formation from Aluminum Chloride by Chemical Vapor Deposition”, Journal of the American Ceramic Society, Vol.72, No.10, pp.1804-1810, Oct 1989.
18. R. Riedel and K. -U. Gaudl, “Formation and Characterization of Amorphous Aluminum Nitride Powder and Transparent Aluminum Nitride Film by Chemical Vapor Deposition”, Journal of the American Ceramic Society, Vol.74, No.6, pp.1331-1334, Jun 1991.
19. W. G. Moore, S. D. Dunmead, K. E. Howard, and K. C. Morse, “Aluminum nitride, aluminum nitride containing solid solutions and aluminum nitride composites prepared by combustion synthesis”, U.S. Patent No.5,649,278, 1997.
20. S. L. Chung, W. L. Yu, and C. N. Lin, “A self-propagating high-temperature synthesis method for synthesis of AlN powder”, Journal of Materials Research, Vol.14, No.5, pp.1928-1933, May 1999.
21. S. M. Bradshaw and J. L. Spicer, “Combustion synthesis of aluminum nitride particles and whiskers”, Journal of the American Ceramic Society, Vol.82, No.9, pp.2293-2300, Sep 1999.
22. J.F. Crider, “Self-propagating High Temperature Synthesis-A Soviet Method for producing Ceramic Materials”, in Procrrdings of the 6th Annual Conference on Composites and advances Ceramic Materials: Ceramic Engineering and Science Proceesinds, Vol.3, p.519 (1982).
23. S. Kumar, “Self-propagating high temperature synthesis of refractory nitrides, carbides and borides”, Key Engineering Materials, Vol. 56-57,pp.183-188(1991)
24. A.G. Merzhanov, ”Self-Propagating High Temperature Synthesis: Twenty Years of Search and Findings”, Combustion and Plasma Synthesis of High-Temperature Materials, , pp.1-53(1990).
25. Z. A. Munir, “Synthesis of high-temperature materials by self-propagating combustion methods”, American Ceramic Society Bulletin, Vol.67, No.2, pp.342-349, Feb 1988.
26. 陳俊霖, “氮化鋁之燃燒合成製程改良及量產技術研究”, 國立成功大學碩士論文, 2016.
27. J. B. Holt and S. D. Dunmead, “Self-heating synthesis of materials”, Annual Review Materials Science, Vol.21, pp.305-334, 1991.
28. B. I. Khaikin and A. G. Merzhanov, “Theory of thermal propagation of a chemical reaction front”, Combustion Explosion and Shock Waves, Vol.2, No.3, pp.22-&, 1966.
29. A. G. Strunina, T. M. Martem’yanova, V. V. Barzykin, and V. I. Ermakov, “Ignition of gasless systems by a combustion wave”, Combustion Explosion and Shock Waves, Vol.10, No.4, pp.449-455, 1974.
30. B. V. Novozhilov, “The rate of propagation of the front of an exothermic reaction in a condensed phase”, Dokl. Akad. Nauk SSSR, Vol.141, pp.151-153, 1961.
31. 劉素英, “自蔓延高溫合成(SHS) TiN粉末的研究”, 自蔓延高溫合成技術研究進展, 武漢工業大學出版社, pp.116-122(1994).
32. 張學軍, 鄭永才和韓杰才, “氮氣壓力對Si3N4-SiC-TiN陶瓷自蔓延燃燒合成的影響 ”, 複 合 材 料 學 報 Acta Materiae Compositae Sinica, 第 23 卷 , 第 3 期 , pp.123-126(2006).
33. 張寶林, 庄漢銳和符錫仁, “硅粉在高壓氮氣中字蔓延燃燒合成氮化硅的反應機理”, 自蔓延高溫合成技術研究進展, 武漢工業大學出版社, pp.131-141(1994).
34. R. Fu, K. Chen, X. Xu and J.M.F. Ferreira, “Highly crystalline AlN synthesized by SHS method”, Materials Letters, Vol.59, pp.2605-2609 (2005).
35. R. Fu, K. Chen, S. Agathopoulos and J.M.F. Ferreira, “Factors which affect the morphology of AlN particle made by self-propagating high-temperature synthesis(SHS)”, Journal of Crystal Growth, Vol.296, pp.97-103(2006).
36. K. Chen, C. Ge, J. Li and W. Cao, “Microstructure and thermokinetics analysis of combustion synthesized AlN”, Journal of Materials Research, Vol.14, pp.1944-1948, 1999..
37. G. J. Jiang, H. R. Zhuang, W. L. Li, F. Y. Wu, B. L. Zhang, and X. R.Fu, “Mechanisms of the Combustion Synthesis of Aluminum Nitride in High Pressure Nitrogen Atmosphere (2) ”, Journal of Materials Synthesis and Processing, Vol. 9, pp. 49–56, Jan 2001.
38. R. Fu, K. Chen, S. Agathopoulos, J.M.F. Ferreira, “Factors which affect the morphology of AlN particles made by self-propagating high-temperature synthesis (SHS)”, Journal of Crystal Growth, Vol. 296, pp. 97-103, 2006.
39. S. L. Chung, W. L. Yu and C.N. Lin, “A self-propagating high-tempeature synthesis method for synthesis of AlN powder” J.Mater. Res., Vol. 14, pp.1928-1933, 1999.
40. 林俊男, “燃燒合成氮化鋁粉體之製程開發與機構探討”, 國立成功大學博士論文, 2001.
41. L. Qiao, S. Chen, J. Zheng, L. Jiang, S. Che, “ Preparation and formation mechanism of aluminum nitride ceramic particles from large aluminum powder by self-propagating high temperature synthesis”, Advanced Powder Technology, Vol. 26, pp. 830-835, 2015.
42. V. V. Zakorzhevskii, and I. P. Borovinskaya “ Combustion Synthesis of Submicron AlN Particles ” Inorganic Materials, Vol. 51, No. 6, pp. 566–571 ,2015.
43. 陳煥煜,使用不同形態之鋁粉以燃燒合成法製備氮化鋁粉體之製程開發及反應機構探討,國立成功大學碩士論文, 2016.
44. Shin, J., Ahn, D. H., Shin, M. S., & Kim, Y. S. (2000). Self‐Propagating High‐Temperature Synthesis of Aluminum Nitride under Lower Nitrogen Pressures. Journal of the American Ceramic Society, 83(5), 1021-1028.
45. Juang, R. C., Lee, C. J., & Chen, C. C. (2003). Combustion synthesis of hexagonal aluminum nitride powders under low nitrogen pressure. Materials Science and Engineering: A, 357(1-2), 219-227.
46. Lee, J., Lee, I., Kim, D., Ahn, J., & Chung, H. (2005). Effect of starting powder morphology on AlN prepared by combustion reaction. Journal of materials research, 20(3), 659-665.
47. Fu, R., Chen, K., Agathopoulos, S., & Ferreira, J. M. F. (2006). Factors which affect the morphology of AlN particles made by self-propagating high-temperature synthesis (SHS). Journal of crystal growth, 296(1), 97-103.
48. 陳煥煜,使用不同形態之鋁粉以燃燒合成法製備氮化鋁粉體之製程開發及反應機構探討,國立成功大學碩士論文, 2016.
49. Lee, J. R., Lee, I., Kim, D. J., Ahn, Y. K., & Chung, H. S. (2004). Self-propagating high-temperature synthesis of aluminum nitride and its characterization. In Materials Science Forum (Vol. 449, pp. 213-216). Trans Tech Publications.
50. Fu, R., Chen, K., Agathopoulos, S., & Ferreira, J. M. F. (2006). Factors which affect the morphology of AlN particles made by self-propagating high-temperature synthesis (SHS). Journal of crystal growth, 296(1), 97-103.
51. Koebel, M., & Strutz, E. O. (2003). Thermal and hydrolytic decomposition of urea for automotive selective catalytic reduction systems: thermochemical and practical aspects. Industrial & engineering chemistry research, 42(10), 2093-2100.
52. Angappan, S., Rajalakshmi, A., Leena, V. A. H., Berchmans, L. J., & Visuvasam, A. (2010). Aluminum nitride by microwave-assisted synthesis: Effect of added ammonium chloride. International Journal of Self-Propagating High-Temperature Synthesis, 19(3), 214-220.
53. Lin, C. N., & Chung, S. L. (2001). Combustion synthesis of aluminum nitride powder using additives. Journal of Materials Research, 16(8), 2200-2208.
54. Costa, A. C. F., Morelli, M. R., & Kiminami, R. H. (2001). Combustion synthesis: effect of urea on the reaction and characteristics of Ni-Zn ferrite powders. Journal of Materials Synthesis and Processing, 9(6), 347-352.
55. Sun, S., Ge, Y., Wang, Q., Cui, W., Zhang, J., Tian, Z., ... & Liu, G. (2019). Combustion synthesis of fine aluminum nitride powders under micropositive N2 pressure with water additive. Journal of the American Ceramic Society, 102(3), 914-918.
56. 吳旭斌, 氮化鋁燃燒合成量產及氮化硼抗侵蝕塗料製程開發, 國立成功大學碩士論文, 2018
57. Radwan, M., & Miyamoto, Y. (2007). Growth of Quasi‐Aligned AlN Nanofibers by Nitriding Combustion Synthesis. Journal of the American Ceramic Society, 90(8), 2347-2351.
58. Angappan, S., Jeneafer, R. A., Visuvasam, A., & Berchmans, L. J. (2013). Synthesis of AlN-presence and absence of additive. Estonian Journal of Engineering, 19(3), 239.
校內:2024-06-28公開