| 研究生: |
林益帆 Lin, Yi-Fan |
|---|---|
| 論文名稱: |
熱擠型銅鋅鉛合金高溫機械性質及熱軋延特性研究 A Study on High Temperature Mechanical Properties and Hot Rolling Characteristics of Hot Extruded Cu-Zn-Pb Alloy |
| 指導教授: |
洪飛義
Hung, Fei-Yi 呂傳盛 Lui, Truan-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 黃銅 、拉伸 、軋延 、切削性 、衝擊 |
| 外文關鍵詞: | brass, tensile, rolling, machinability, impact |
| 相關次數: | 點閱:65 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
黃銅為工業界常使用的工程材料,亦大量應用於電子通信產業中,為了加強加工性能及改善加工後的表面平整度,經常於黃銅中添加微量的鉛元素 (1-3 wt.%),促使產生破碎的切削屑。然而,此舉會降低黃銅在高溫中的塑型性能,不僅造成不均勻變形,進而導致製程中斷料的危機,或是於其他加熱變形製程中破裂。故本研究將對熱擠型Cu38Zn3Pb合金的高溫機械性質做系統性的探討,並研究熱擠型Cu38Zn3Pb合金經過不同程度熱軋變形後的機械性質、切削性評估及抗脫鋅腐蝕能力。
實驗結果顯示,熱擠型Cu38Zn3Pb合金於500°C以上時有較高的拉伸延性,而衝擊韌性於中高溫區間有一個下降的區間存在,具有脆性效應,此溫度約在400 °C至600 °C間,直到700 °C以上時才恢復與衝擊韌性。破斷表徵與溫度關係為在低溫時是晶粒破裂,中溫時則呈現沿晶型的破壞行為,到了高溫範圍後又呈現穿晶破裂的形式。
熱擠型Cu38Zn3Pb合金於熱軋實驗中,經過熱軋後的Cu38Zn3Pb合金會發生明顯的動態再結晶現象,有助於組織的細化及機械性質的提升。此外,隨熱變形的程度上升,硬度隨之增加,並影響切削時產生的切屑形貌及大小。再者,由於熱變形時所造成的組織細化、晶界密度上升及差排堆積,將使得合金的腐蝕電流升高,耐蝕性能下降,較易受到脫鋅效應的影響。熱擠型Cu38Zn3Pb合金在400 °C至600 °C間具有中溫脆性,而高溫下延性與韌性均顯著提升,經切削加工評估可達連續切削條件之要求,相關熱作成果可提供銅業應用參考。
In order to enhance the processing performance and improve the surface flatness after cutting, a small amount of lead (1-3 wt.%) is often added to the brass, making the cutting chips tattered. However, it will reduce the shaping ability at high temperatures, causing uneven deformation and cracking during the process. Therefore, this study will discuss the high temperature mechanical properties of hot extruded Cu38Zn3Pb alloy, and study the mechanical properties, machinability and resistance to dezincification corrosion of hot extruded Cu38Zn3Pb alloy after hot rolling.
The results show that the hot extruded Cu38Zn3Pb alloy has higher tensile ductility at temperatures above 500 °C, but there exists a decreasing range of the impact toughness in the intermediate temperature, and which is the brittle effect. The impact toughness is not recovered until 700 °C. The Cu38Zn3Pb alloy undergoes dynamic recrystallization after hot rolling, which promote the refinement of the structure and the improvement of mechanical properties. In addition, as the deformation ratio increases, the hardness increases and affects the shape and size of the chips generated during cutting. Furthermore, the refinement of the structure and dislocation accumulated result in a decrease in the corrosion resistance of the alloy.
The hot-extruded Cu38Zn3Pb alloy exist the intermediate temperature embrittlement, and the ductility and toughness at high temperature are significantly improved. After drilling test, the requirements of continuous cutting conditions can be met, and relevant results can provide reference for copper industry application.
[1] G. Pantazopoulos, Leaded Brass Rods C 38500 for Automating Machining Operations: A Technical Report, Journal of Materials Engineering and Performance, 402-407, 2002.
[2] A. I. Toulfatzis, G. Pantazopoulos, and A. S. Paipetis, Fracture Behavior and Characterization of Lead-free Brass Alloys for Machining Applications, Journal of Materials Engineering and Performance, 3193-3206, 2014.
[3] G. Pantazopoulos and A. Toulfatzis, Failure Analysis of a Machinable Brass Connector In A Boiler Unit Installation, Case Studies in Engineering Failure Analysis, 18-23, 2013.
[4] A. Vazdirvanidis and G. Pantazopoulos, Intergranular Cracking of High Strength Extruded Brass Alloys, Springer International Publishing, 217-224, 2018.
[5] R. E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, Cengage Learning, 691-692, 1994.
[6] A. Sulaymon, S. Mohammed, and A. Abbar, Characterization and Electrochemical Preparation of Thin Films of Binary Heavy Metals (Cu-Pb,Cu-Cd,Cu-Zn) from Simulated Chloride Wastewaters, International Journal of Electrochemical Science, 6328-6351, 2014.
[7] L. Suárez, P. Rodriguez-Calvillo, J. M. Cabrera, A. Martínez-Romay, D. Majuelos-Mallorquín, and A. Coma, Hot working analysis of a CuZn40Pb2 brass on the monophasic (β) and intercritical (α+β) regions, Materials Science and Engineering: A, 42-50, 2015.
[8] F. Tesfaye and P. Taskinen, Phase Equilibria and Thermodynamics of the System Zn- As-Cu-Pb-S at Temperatures Below 1173 K, Aalto University publication series SCIENCE+TECHNOLOGY, 51, 2011.
[9] F. J. Humphreys and M. Hatherly, Chapter 13 - Hot Deformation and Dynamic Restoration in Recrystallization and Related Annealing Phenomena, Elsevier, 415-V, 2004.
[10] H. McQueen and C. Imbert, Dynamic Recrystallization: Plasticity Enhancing Structural Development, Journal of Alloys and Compounds, 35-43, 2004.
[11] R. Kaibyshev and O. Sitdikov, Dynamic recrystallization of magnesium at ambient temperature, Zeitschrift fuer Metallkunde, 738-743, 1994.
[12] S. Gourdet and F. Montheillet, An experimental study of the recrystallization mechanism during hot deformation of aluminium, MATER SCI ENG A-STRUCT MATER, 274-288, 2000.
[13] S. Spigarelli, M. E. Mehtedi, M. Cabibbo, F. Gabrielli, and D. Ciccarelli, High temperature processing of brass: Constitutive analysis of hot working of Cu–Zn alloys, Materials Science and Engineering: A, 331-339, 2014.
[14] M. F. Ashby, C. Gandhi, and D. M. R. Taplin, Fracture-mechanism maps and their construction for f.c.c. metals and alloys, Acta Metallurgica, 699-729, 1979.
[15] J. N. Greenwood, D. R. Miller, and J. W. Suiter, Intergranular cavitation in stressed metals, Acta Metallurgica, 250-258, 1954.
[16] P. W. Davies, G. R. Dunstan, R. W. Evans and B. Wilshire: J. Inst. Met., 195–197, 1971.
[17] M. Sanchez Medina, R. Sangiorgi, and N. Eustathopoulos, On the embrittlement of copper by liquid lead inclusions, Scripta metallurgica, 737-738, 1981.
[18] H. Suzuki, Intermediate Temperature Embrittlement in Pure Copper, Journal of the Japan Institute of Metals, 1016, 1984.
[19] M. C. Roth, G. C. Weatherly, and W. A. Miller, The Role of Liquid Metal Embrittlement in Free-Machining Alloys Containing Low-Melting-Point Inclusions, Canadian Metallurgical Quarterly, 341-348, 1979.
[20] D. J. Wolley and A. G. Fox, The embrittlement of leaded and unleaded α+β (60−40) brasses in the temperature range 300 to 500°C, Journal of Materials Science Letters, 763-765, 1988.
[21] V. Laporte and A. Mortensen, Intermediate temperature embrittlement of copper alloys, International Materials Reviews, 94-116, 2009.
[22] H. Yamagata and O. Izumi, Intermediate Temperature Embrittlement of Alpha-solid Solution Cu-Zn and Cu-al Alloys, Journal of the Japan Institute of Metals, 1167-1173, 1978.
[23] Y. V. R. K. Prasad and S. Sasidhara, Hot Working Guide: A Compendium of Processing Maps, ASM International, 1997.
[24] G. Pantazopoulos and A. Vazdirvanidis, Failure Analysis of a Fractured Leaded-Brass (CuZn39Pb3) Extruded Hexagonal Rod, Journal of Failure Analysis and Prevention, 218-222, 2008.
[25] O. Izumi, Intermediate temperature embrittlement and intercrystalline cracking in copper alloys, Bulletin of the Japan Institute of Metals, 15-22, 1979.
[26] F. W. Giacobbe, Thermodynamic dezincification behavior of brass during annealing, Journal of Alloys and Compounds, 243-250, 1993.
[27] R. H. Heidersbach and E. D. Verink, The Dezincification of Alpha and Beta Brasses, CORROSION, 397-418, 1972.
校內:2024-08-07公開