簡易檢索 / 詳目顯示

研究生: 陳偉聖
Chen, Wei-Sheng
論文名稱: 電爐集塵灰與焚化飛灰除氯技術之研究
Removal of Chloride from Electric Arc Furnace Dust and Incineration Fly Ash
指導教授: 申永輝
Shen, Yun-Hwei
蔡敏行
Tsai, Ming-Shing
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 148
中文關鍵詞: 電爐集塵灰焚化飛灰除氯技術氯化物種
外文關鍵詞: EAF dust, MSWI fly ash, chloride removal, chloride species
相關次數: 點閱:122下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電爐集塵灰是電爐煉鋼之主要副產品,其產生量約為每噸鋼產量之10~20公斤,估計台灣每年產生待處理之電爐煉鋼集塵灰約有17萬公噸。這些集塵灰顆粒微小,又含有大量的重金屬及毒性化物質,如戴奧辛等,如不妥善處理,對環境的污染及影響很大。電爐集塵灰含有20~30%的鋅及20~40%的鐵,是很好的再生資源,國內已建構五個電爐煉鋼集塵灰的資源再生廠,進行金屬資源再生。
    國內碳鋼電爐廠因廢鐵進料品質較差與為避免石灰粉化常添加氯化鈉,使得電爐集塵灰中氯含量高達5~7%。電爐集塵灰中所含氯化物若未經處理而逕行後續金屬資源化流程,則在高溫反應與低溫冷卻之循環製程中,易衍生戴奧辛(Dioxin)污染,也常會造成煙道系統腐蝕與阻塞而需停爐調修。此外,含氯量之多寡,更影響二次集塵灰回收轉售鉛鋅冶煉廠之價格。目前除氯技術為高溫除氯及濕法除氯,惟兩者之技術適用性與除氯效果仍有進一步提昇之空間,關鍵還是在於含氯物種的特性掌握是否完整。本研究透過電爐集塵灰含氯物種鑑識解析,並進行一系列的焙燒除氯實驗及水洗除氯實驗。由研究結果顯示,電爐集塵灰主要的氯化物種為氯化鉀、氯化鈉、氯化鉛及氯化鋅等。在焙燒實驗中,集塵灰樣品於管型爐中加熱,並探討不同氣氛、不同溫度及不同時間之影響,結果顯示碳化焙燒可以得到較佳除氯效果。在水洗實驗中,易溶於水的氯化物種在固液比1:10時可以完全除去,但電爐集塵灰經長時間風化過程,可能潮解形成不易溶解之氯化鉛-氫氧化鉛與氯化-氫氧化鋅的化合物,此化合物經易增加傳統濕式水洗脫氯之困難。所以建議之電爐集塵灰除氯流程為先以乾式方式,去除其中之氯化鉛及氯化鋅,再緊接著以水洗方式去除其中易溶於水的氯化鉀及氯化鈉。
    國內目前每年焚化飛灰產生量約為26萬噸,這些飛灰因含大量氯鹽、重金屬及戴奧辛,而被環保主管機關認定為有害事業廢棄物。目前的主要處理方式為掩埋,但受限於掩埋空間有限,其再利用方式備受各界關注。然而飛灰中含有氯鹽,限制其再利用至營建骨材。飛灰主要的含氯物種為氯化鉀、氯化鈉及氯化鈣,本研究將運用乾式及濕式的除氯技術探討其除氯的可行性。研究結果顯示,乾式除氯在1050℃下焙燒7小時,可以除氯達83%;濕式水洗除氯在固液比1/10條件下,可以除氯達97%,同時也探討水洗溫度、通入空氣或二氧化碳對除氯效率的影響。所以建議之焚化飛灰除氯流程為先以濕式水洗方式去除其中易溶於水的氯化鉀及氯化鈉,再以高溫焙燒方式去除其中之氯化鈣,以利後續再利用作為燒結原料。

    Electric arc furnace dust (EAF dust) is the major byproducts of the EAF steelmaking industry. EAF process generated about 10~20kg of dust for one metric ton of steel produced. Approximately, 170,000 tones of EAF dusts were generated per year in Taiwan. EAF dusts, which are composed of heavy metals in the form of extremely fine size, have imposed a serious pollution problem to the environment. The metals contained in EAF dust are economically valuable, especially zinc(20~30%) and iron(20~40%). Hence, five treatment plants are established in Taiwan to recover metal value.
    The electric arc furnace dust (EAF dust) with high chloride content will increase the threat of dioxin emission and degraded the value of recycled zinc oxide in the EAF dust recycling plant. A number of laboratory experiments were conducted in this research to determine the technical feasibility of dechlorination method. These methods consist of a series of roasting processes and water flush processes were examined respectively. The results indicated that chloride species in EAF dust were potassium chloride, sodium chloride, lead chloride hydrate and hydroxide, zinc chloride hydrate and hydroxide. In the roasting process, EAF dust was heated in tube furnace and the parameters evaluated were effects of atmospheric conditions, roasting temperature and roasting time. The results indicated that carbonation roasting was more efficient in reducing chloride content than the other. In the case of water flushing process that can totally removed water-soluble chloride at a solid to liquid ratio of 1:10, whereas remaining water-insoluble substance is a difficulty to dechlorination success, for instance, lead hydroxyl halide and zinc hydroxyl halide formed agglutinative matrix was hard to wash away. The suggested chloride removal process is applying carbonation roasting first to remove lead chloride and zinc chloride, and then introducing water flushing process to dissolve potassium chloride and sodium chloride.
    Around 260,000 metric tones of fly ash were generated from municipal solid waste incineration (MSWI) in Taiwan. The MSWI fly ash is generally categorized as hazardous waste due to the presence of high level of alkali chloride and soluble metal salt. The reuse or recycling of fly ash becomes the issue because of limited landfill space. The chloride content in fly ash limits its application as construction materials. Chloride species existed predominantly as potassium chloride, sodium chloride, calcium chloride hydrate and hydroxide in fly ash. A number of laboratory experiments were conducted in this research to determine the technical feasibility of dechlorination method. These methods consist of a series of roasting processes and water-flushing processes were examined respectively. From several roasting experiments, the removal of chloride content from fly ash at 1050°C for 7hr showed the best results (83% chloride removal efficiency). In the case of water-flushing process that can totally remove water-soluble chloride at a solid to liquid ratio of 1:10 (97% chloride removal efficiency). The effects of aeration and carbonation with washing process were also discussed. The suggested chloride removal process is applying water flushing process first to dissolve potassium chloride and sodium chloride, and then introducing roasting process to remove calcium chloride.

    總目錄 中文摘要 Ⅰ ABSTRACT Ⅲ 謝 誌 Ⅴ 總 目 錄 Ⅵ 表 目 錄 Ⅷ 圖 目 錄 Ⅸ 第一章 緒論 1-1 1.1 前言 1-1 1.2 研究背景 1-3 1.3 研究動機及目的 1-6 1.4 研究架構及內容 1-9 1.5 論文內容說明 1-12 第二章 文獻回顧與資源化現況 2-1 2.1 前言 2-1 2.2 文獻回顧 2-3 2.3 電爐集塵灰資源化技術及處理現況 2-10 2.4 焚化飛灰資源化技術及處理現況 2-21 2.5 結論 2-25 第三章 電爐集塵灰與焚化飛灰之性質研究 3-1 3.1 前言 3-1 3.2 電爐集塵灰與焚化飛灰之來源及特性說明 3-3 3.3 實驗方法及步驟 3-10 3.4 結果與討論 3-14 3.5 結論 3-30 第四章 電爐集塵灰除氯之研究 4-1 4.1前言 4-1 4.2實驗方法與步驟 4-6 4.3結果與討論 4-10 4.4結論 4-34 第五章 焚化飛灰除氯之研究 5-1 5.1 前言 5-1 5.2 實驗方法與步驟 5-4 5.3 結果與討論 5-6 5.4 結論 5-17 第六章 總結論與建議之除氯流程 6-1 6.1 總結論 6-1 6.2 建議之除氯流程 6-2 參考文獻 參-1 表目錄 表2-1 目前世界上電弧爐煉鋼煙塵處理及資源化方法 2-12 表2-2 各國已商業化之集塵灰資源化技術 2-13 表2-3 國內電爐煉鋼集塵灰處理現況分析 2-14 表2-4 台灣鋼聯(股)公司粗氧化鋅與爐渣之化學組成分析 2-15 表2-5 燁聯鋼鐵(股)公司集塵灰之化學組成分析 2-17 表3-1 集塵灰累積粒徑分佈表 3-15 表3-2 國內電弧爐煉鋼煙塵之成分分析表 3-21 表3-3 電弧爐煉鋼煙塵毒性溶出測試(TCLP)結果 3-22 表3-4 焚化飛灰之化學組成成分 3-25 表3-5 焚化飛灰焙燒樣品晶相分析表 3-29 表4-1 電爐集塵灰中各化合物之熔點及沸點 4-15 表4-2 二氧化硫焙燒樣品晶相分析表 4-18 表4-3 二氧化碳焙燒樣品晶相分析表 4-20 表4-4 多段水洗除氯效果分析 4-24 表5-1 焚化飛灰高溫焙燒之除氯效果 5-8 表5-2 焚化飛灰焙燒樣品晶相分析表 5-10 表5-3 溫度與時間對水洗除氯效果比較表 5-13 表5-4 溫度與曝氣對水洗除氯效果比較表 5-13 表5-5 焚化飛灰水洗樣品晶相分析表 5-15 圖目錄 圖1-1 研究架構示意圖 1-11 圖2-1 台灣鋼聯公司EAF集塵灰資源化處理示意 2-15 圖2-2 燁聯鋼鐵(股)公司EAF集塵灰資源化處理示 2-16 圖2-3 嘉德創資源(股)公司資源化處理流程圖 2-18 圖2-4 Primus Process資源化回收流程示意圖 2-19 圖2-5中國鋼鐵(股)公司資源化回收流程圖 2-19 圖3-1 電爐集塵灰濕式粒徑分析 3-16 圖3-2 電爐集塵灰乾式粒徑分析 3-16 圖3-3 電弧爐煉鋼煙塵顯微觀察圖 3-17 圖3-4 A廠集塵灰原樣XRD圖 3-18 圖3-5 B廠集塵灰原樣XRD圖 3-19 圖3-6 電爐集塵灰熱重/熱示差分析結果 3-23 圖3-7 電爐集塵灰水洗殘渣熱重/熱示差分析結果 3-23 圖3-8 焚化飛灰熱重/熱式差分析結果 3-26 圖3-9 焚化飛灰XRD 晶相分析結果 3-28 圖4-1 乾式除氯設備裝置圖 4-7 圖4-2 造粒淋洗系統 4-8 圖4-3 自然風化實驗系統 4-9 圖4-4 電爐集塵灰焙燒除氯結果(通入空氣) 4-13 圖4-5 電爐集塵灰焙燒除氯結果(通入二氧化硫氣體) 4-13 圖4-6 電爐集塵灰焙燒除氯結果(通入二氧化碳氣體) 4-14 圖4-7 碳酸鹽與硫酸鹽取代氯化物之反應熱力學計算 4-16 圖4-8 二氧化硫焙燒後的XRD晶相分析圖 4-17 圖4-9 二氧化碳焙燒後的XRD晶相分析圖 4-19 圖4-10 水洗實驗氯及其他金屬溶出情形 4-23 圖4-11 多次淋洗實驗氯及其他金屬溶出情形 4-25 圖4-12 風化樣品的氯及其他金屬溶出情形 4-27 圖4-13 風化樣品的金屬溶出與pH值關係圖 4-27 圖4-14 風化實驗樣品XRD晶相分析圖 4-28 圖4-15 集塵灰風化前後含氯物種XRD晶相分析 4-30 圖4-16 風化集塵灰水洗後之XRD晶相轉移分析結果 4-32 圖5-1 焚化飛灰乾式除氯設備裝置圖 5-5 圖5-2 焚化飛灰高溫焙燒樣品XRD晶相分析圖 5-9 圖5-3 焚化飛灰水洗樣品XRD晶相分析圖 5-14 圖6-1 建議之電爐集塵灰除氯流程 6-4 圖6-2 建議之焚化飛灰除氯流程 6-4

    參考文獻
    1. 陳偉聖,”煉鋼煙塵回收有價物之研究”,國立成功大學礦冶及材料研究所,碩士論文,民國75年6月
    2. 李宗立,“電弧爐煉鋼煙塵之性質與資源化研究”,國立成功大學礦冶及材料研究所,博士論文,民國82年7月
    3. 林士堯,”電弧爐煉鋼煙塵資源化/安定化之研究”,國立成功大學資源工程研究所,碩士論文,民國85年6月
    4. 吳士豪,”濕式冶金法資源化電弧爐煉鋼煙塵之研究”,國立成功大學資源工程研究所,碩士論文,民國87年6月
    5. 蔡尚林,”燃油飛灰性質與資源化之研究”,國立成功大學資源工程研究所,博士論文,民國88年6月
    6. 謝雅敏,”燃油飛灰中未燃碳資源化之基礎研究”,國立成功大學資源工程研究所,博士論文,民國94年1月
    7. 蔡樹鴻,”都市垃圾焚化灰渣資源化處理之基礎研究”,國立成功大學資源工程研究所,碩士論文,民國86年6月
    8. 周信輝,”都市垃圾焚化反應灰安定化之研究”,國立成功大學資源工程研究所,碩士論文,民國90年7月
    9. 吳俊耀、洪文雅、余騰耀, “電弧爐煉鋼業空氣防治污染現況”, 工業污染防治, 第43期, pp. 47~74, 1992.
    10. L.L. Stephen F. L Wayne, G.S Janet and W.K. Gary, “characterization of Steelmaking Dusts From Electric Arc Furnaces”, Bureau of Mines Report of Investigation 8570, 1983
    11. 蔡敏行、陳偉聖、李宗立, “煉鋼煙塵所含重金屬成分之調查研究”, 第一屆環境分析研討會, pp. 49~79, 民國75年5月.
    12. Higley, L. W. and M. M. Fine, “Electric Furnace Steelmaking Dusts – A Zinc Raw Material”, Bureau of Mines Report of Investigation 8209, 1977
    13. Frendy, J. J. and S. Feriay, “Recovery of Lead and Zinc from Electric Secondary Steelmaking Dusts by the Cebedeau Process”, Recycle and Secondary Recovery of Metals, Editor, Taylor, P.R., H.Y. Sohn and N. Jarrett 1985, pp.195~202
    14. J.G. Eacott M.C. Robinson, Busse J.E. Burgener and P. E. Burgener, “Techno-economic Feasibility of Zinc and Lead Recovery from Electric Arc Furnace Baghouse Dust”, M Bulletin. Vol. 77, pp.75~81, 7/1984
    15. Fosnacht, D.R., “Recycling of Ferrous Steel Plant Fines, State-of-the-art”, Disposal Recycling and Recovery of Electric Furnace Exhaust Dust, edited by Iron and Steel Society, AIME, 1987, pp.15~19.
    16. Kaltenhauser, R., ”Recycling Furnace Dust”, ibid. pp.31~50.
    17. Valdez, E.G. and K.C. Dean, “experiments in Treating Zinc-Lead Dusts from Iron Foundries” Bureau of Mines Report of Investigation 8000, 1975
    18. 吳佳正,陳偉聖, E. Gock, J. Kahler, and 蔡敏行, "電爐煉鋼集塵灰除氯前處理─台灣與德國案例探討",第19屆廢棄物處理技術研討會,2004.
    19. 陳偉聖,周瑋珊,吳佳正,蔡敏行, "低溫反應性焙燒進行電弧爐煉鋼集塵灰除氯之可行性研究",中華民國環境工程學會 2006 廢棄物處理技術研討會,台灣,2006.
    20. L. Barreiro, M. Cruells, and A. Roca, "Concentration of zinc and lead from electric arc furnace flue dusts," Second International Conference on the Recycling of Metals; Amsterdam; Netherlands; 19-21 Oct, 1994.
    21. N. Leclerc, E. Meux, and J.-M. Lecuire, "Hydrometallurgical recovery of zinc and lead from electric arc furnace dust using mononitrilotriacetate anion and hexahydrated ferric chloride", Journal of Hazardous Materials, vol. 91, pp. 257-270, 2002.
    22. R. Edwards, R. D. Gillard, and P. A.Williams, "Studies of secondary mineral formation in the PbO-H2O-HCl system," Mineralogical Magazine, vol. 56, pp. 53-65, 1992.
    23. C. C. Venetopoulos and P. J. Rentzeperis, "The crystal structure of laurionite, Pb(OH)Cl," Zeitschrift fur Kristallographie, vol. 141, pp. 246-259, 1975.
    24. A. M. Hagni, R. D. Hagni, and C. Demars, "Mineralogical Characteristics of Electric Arc Furnace Dusts," Journal of Metals, vol. 43, pp. 28-30, 1991.
    25. J. E. Dutrizac and T. T. Chen, "Characterization of Waelz Kiln Products: Why The Recycling of EAF Dusts is Difficult," ASEM Workshop on Clean technologies, Hanoi, pp. 177-190, 2004.
    26. N. Guresin and Y. A. Topkaya, "Dechlorination of a zinc dross," Hydrometallurgy, vol. 49, pp. 179-187, 1998.
    27. F. C. Sahin, B. Derin, and O. Yucel, "Chloride removal from zinc ash," Scandinavian Journal of Metallurgy, vol. 29, p. 224, 2000.
    28. W. J. Bruckard, K. J. Davey, T. Rodopoulos, J. T. Woodcock, and J. Italiano, "Water leaching and magnetic separation for decreasing the chloride level and upgrading the zinc content of EAF steelmaking baghouse dusts", International Journal of Mineral Processing, vol. 75, pp. 1-20, 2005.
    29. J. G. Yoo, G. S. Kim, and Y. M. Jo, "Separation of chlorides from EAF dust," Journal of Industrial and Engineering Chemistry, vol. 10, pp. 894-898, Nov 2004.
    30. N. Menad, J. N. Ayala, F. Garcia-Carcedo, E. Ruiz-Ayucar, and A. Hernandez, "Study of the presence of fluorine in the recycled fractions during carbothermal treatment of EAF dust", Waste Management, vol. 23, pp. 483-491, 2003.
    31. A. Chmielarz and W. Gnot, "Conversion of zinc chloride to zinc sulphate by electrodialysis--a new concept for solving the chloride ion problem in zinc hydrometallurgy," Hydrometallurgy, vol. 61, pp. 21-43, 2001.
    32. Kuen-Sheng Wang, Kung-Yuh Chiang, Kae-Long Lin and Chang-Jung Sun “Effects of a water-extraction process on heavy metal behavior in municipal solid waste incinerator fly ash” Hydrometallurgy, Vol.62, pp73-81, 2001
    33. 楊金鐘、黃建宏,”高溫、水洗前處理對於都市垃圾焚化飛灰固化體性能之影響”,中國環境工程學刊,Vol.7 No.3, pp211-218, 1997
    34. 楊金鐘、周順裕,”利用磷酸鹽穩定化處理都市垃圾焚化飛灰之效果評估”,第十二屆廢棄物處理技術研討會論文集, pp571-584, 1997
    35. 楊金鐘、周順裕,”矽酸鹽添加劑對都市垃圾焚化飛灰穩定化產物重金屬溶出特性之影響”,第十二屆廢棄物處理技術研討會論文集, pp603-610, 1997
    36. 高思懷等,”都市垃圾焚化灰渣中的重金屬穩定方法及灰渣再資源化之方法”,中華民國專利,200902471,2007
    37. 李文智等,”中溫脫附結合高溫電漿氧化破壞戴奧辛類化合物之處理設備與方法”,中華民國專利,I309289,2006
    38. 黃千紋,”利用煉鋼電弧爐熔融處理垃圾焚化飛灰之效益評估”,國立中山大學,碩士論文,民國94年6月
    39. 莊春南,”利用煉鋼電弧爐熔融處理垃圾焚化飛灰實廠測試研究”,國立中山大學,碩士論文,民國92年6月
    40. 國賓大地公司,”焚化飛灰之處理程序”,中華民國專利,200942338,2008
    41. 日本太平洋水泥股份公司,”焚化飛灰之處理方法及裝置”,中華民國專利,I 257330,2008
    42. 日本沸石化學產業有限公司,”幾乎不產生戴奧辛之廢棄焚燒方法,戴奧辛產生之抑制劑及抑制劑之製法”,中華民國專利,I508275,2001
    43. 日本三井造船及旭硝子股份有限公司,”鈉系脫氯劑,使用該脫氯劑之煙道氣脫氯方法及廢棄物處理設備”,中華民國專利,I472125,2000
    44. 台灣鋼鐵公會,”1999 台灣清潔生產專題研討會—電弧爐煉鋼廠/不銹鋼煉鋼廠之廢棄物再生”,1999年10月
    45. 台灣鋼鐵公會,”2000 台灣清潔生產專題研討會—鋼廠污泥、爐渣回收再利用”,2000年5月
    46. T.W. Unger, “Waelz Kiln Recovery Process for Electric Arc Furnace Dust”, Disposal Recycling and Recovery of Electric Furnace Exhaust Dust, Edited by Iron and Steel Society, AIME,p.103~p.105 (1989)
    47. 林俊泉,”再生鋅冶煉技術之研究”,資源再生及其污染防治技術研討會,主編者:翁林廷彬,p.43~p.60,民國79年4月
    48. J.F. Pusateri , R.Chew and A.E.Stanze , “On-Site Treatment of EAF Dust Via the ST.Joe Flame React”, Disposal Recycling and Recovery of Electric Furnace Exhaust Dust , Edited by Iron and Steel Society , AIME , p.103~p.105 (1987)
    49. S.Erisson , H.G.Herlitz and S.O.Santen , “Operating Experience with the Plasma dust Process” , ibid. , p.145~p.150(1985)
    50. D.Naden and P.Kershaw , “Fluid-Bed Ore Reduction and Plasma Smelting Technology for Metal Production from Ore and Metal Fines and EAF Dust” , ibid., p.137~p.144(1985)
    51. J.Frenay , J.Hissel and S.Feriay , “Recovery of Lead and Zine from Electric Secondary Steelmaking Dusts by the Cebedeau Process” , ibid. , p.195~p.202(1985)
    52. M.C.Jha , W.P.C Duyvesteyn , “A Two-Stage Leaching Process for Selective Recovery of Zinc from Steel Plant Dusts” , Recycle and Secondary Recovery of Metals, Edited by P.R.Taylor, H.Y.Sohn and N.Jarrett, Met.Soc.AIME , P.143~P.157(1985)
    53. J.Frenay , S.Ferlay and J.Hissel , “Zinc and Lead Recovery from EAF Dusts by Caustic Soda Process”, ibid. , p.171~p.175(1985)
    54. Duyvesteyn , W. and Jha , M.C. , U.S. Patent 4,572,771 , Feb.25 (1986)
    55. D.B. Dreisinger ,E.Peter and G.Morgan , “The Hydro-metallurgical Treatment of Carbon steel Electric Arc Furnace Dusts by the UBC-Chaparral Process”, Hydrometallurgy , Vol.25, p.137~p.152(1990)
    56. Macro Olper , “The Ezincex Process” , EPO Congress (1994)
    57. 台灣鋼聯股份有限公司,煉鋼集塵灰資源化回收處理流程公司簡介,2008年。
    58. 方彥斌,”我國以旋轉窯(waelz kiln)回收電爐集塵灰中氧化鋅之操作狀況”,海峽兩岸電爐煉鋼集塵灰回收氧化鋅及電爐冶煉再生金屬鋅技術研討會,2008年03月。
    59. 行政院環境保護署,廢棄物資源化技術暨附加價值提昇研究計畫(EPA-94-U1H1-02-101),2006.02。
    60. 嘉德創資源股份有限公司,資源化回收處理流程公司簡介,2009。
    61. 陳信榮,事業廢棄物焚化產出灰渣應用於煉鋼製程之研究(中鋼公司實例),事業廢棄物焚化灰渣資源化學術研討會,2009.07。
    62. Zhao, Y. L. Song, and G. Li, “Chemical Stabilization of MSW Incinerator Fly Ash”, Journal f Hazardous Materials, B95, pp.47~63, 2002
    63. Esaki, M., I. Kawakami, and M. Sumitomo, “Immobilization of Fly Ash with Cement Solidification and Chemical Treatment”, Conference of Japan Social of Waste Management Experts 5th, pp. 432~434, 1995
    64. 張瑞洲,"焚化飛灰取代水泥及砂應用在砂漿體之研究",國立雲林科技大學,碩士論文,2003.
    65. 李宗彥,"都市垃圾焚化飛灰融渣粉體對不同類型水泥之卜作嵐反應行為",國立中央大學,碩士論文,2001.
    66. Hamernik, J.D., and G. C. Frantz, ACI Mater, 88, p. 294, 1991
    67. Ferreira, A., and L. Ribero, “Possible Applications for Municipal Solid Waste Fly Ash”, Journal of Hazardous Materials, B96, pp. 201~216, 2003
    68. 劉建民 and 粘愷峻,"煉鋼業電弧爐製程中戴奧辛減量技術介紹," 環保技術e報, vol. 29, 2005.
    69. 工業污染防治技術服務團, 鋼鐵業廢棄物資源化案例彙編: 經濟部工業局, 1996.
    70. 黃志峰, "電弧爐戴奧辛生成機制與處理技術 " 環安簡訊電子報, vol. 47, 2004.
    71. 工研院環境與安全衛生技術發展中心,"未納管戴奧辛排放源改善 及大型焚化爐重金屬排放調查計畫",工業技術研究院環境與安全衛生技術發展中心,2005.
    72. I. Palencia, R. Romero, N. Iglesias, and F. Carranza, "Recycling EAF Dust Leaching Residue to the Furnace: A simulation Sturdy," Journal of Hazardous Materials, 1999.
    73. A.-G. Guezennec, J.-C. Huber, F. Patisson, P. Sessiecq, J.-P. Birat, and D. Ablitzer, "Dust formation in Electric Arc Furnace: Birth of the particles," Powder Technology, vol. 157, pp. 2-11, 2005.
    74. T. Sofilic, A. Rastovcan-Mioc, S. Cerjan-Stefanovic, V. Novosel-Radovic, and M. Jenko, "Characterization of steel mill electric-arc furnace dust," Journal of Hazardous Materials, vol. 109, pp. 59-70, 2004.
    75. G. Laforest and J. Duchesne, "Characterization and leachability of electric arc furnace dust made from remelting of stainless steel", Journal of Hazardous Materials, vol. 135, pp. 156-164, 2006.
    76. J. A. Stegemann, A. Roy, R. J. Caldwell, P. J. Schilling, and R. Tittsworth, "Understanding Environmental Leachability of Electric Arc Furnace Dust " Journal of Environmental Engineering, vol. 126, pp. 112-120 2000.
    77. T. Havlik, B. V. e. Souza, A. M. Bernardes, I. A. H. Schneider, and A. Miskufova, "Hydrometallurgical processing of carbon steel EAF dust," Journal of Hazardous Materials, vol. 135, pp. 311-318, 2006.
    78. L. Chung-Lee and T. Min-Shing, "A crystal phase study of zinc hydroxide chloride in electric-arc-furnace dust," Journal of Materials Science, vol. V28, pp. 4562-4570, 1993.
    79. J. Antrekowitsch, M. Hochenhofer, and D. Offenthaler, "A THERMOCHEMICAL STUDY OF DIFFERENT OPTIONS FOR HALOGEN REMOVAL FROM NONFERROUS METAL-CONTAINING WASTES " in EPD Congress 2005 as held at the 2005 TMS Annual Meeting San Francisco, CA; USA: Minerals, Metals and Materials Society (TMS), 184 Thorn Hill Road, Warrendale, PA, 15086-7528, USA, http://www.tms.org, 2005.
    80. Green, Don W. and Perry, Robert H., “Perry’s Chemical Engineers’ Handbook”, McGraw Hill, 2008
    81. J. W. Ahn, “Pre-treatment of Municipal Solid Waste Incineration(MSWI) Bottom Ash for Utilization in Road Construction and Cement Manufacture”, in International Symposium on Recycling Technologies for Heavy Metal Containing Ash, Slag, and Sludge, Tainan, Taiwan, 2007.
    82. 張君偉,"水洗前處理與添加劑對都市垃圾焚化飛灰燒結特性的影響",環境工程研究所碩士論文,國立中央大學,2000.

    無法下載圖示 校內:2016-04-19公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE