簡易檢索 / 詳目顯示

研究生: 藍宏銘
Lan, Hong-ming
論文名稱: 原子力顯微鏡於PC-12類神經細胞軸突再生研究
Application of AFM to Investigate Axon Regeneration of PC-12 Neuron-like Cells
指導教授: 林宙晴
Lin, Chou-Ching
朱銘祥
Ju, Ming-Shaung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 120
中文關鍵詞: 軸突生長PC-12類神經細胞原子力顯微鏡軸突貼附力壓深實驗
外文關鍵詞: indentation test, axon adhesion force, axon growth, Atomic force microscopy, PC-12 neuron-like cell
相關次數: 點閱:74下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 神經導管的使用在治療神經損傷的病患中扮演著輔助再生角色,因此,如何提升管內斷端神經再生效率一直是研究的重點。本研究將從一般軸突生長的角度出發,重點在於觀察軸突生長過程中的生理和生物力學變化。
    本研究實驗樣本為PC-12類神經細胞,藉由添加神經生長因子(NGF)誘發軸突生長,紀錄軸突在ㄧ般情況下的生長過程,並針對給予電場刺激的情況下,觀察電場因素對軸突生長的影響。而後搭配原子力顯微鏡,利用壓深實驗探測軸突生長過程中黏彈力學特性的變化,並量測軸突各區域在不同基質下貼附力的差異。
    實驗結果顯示軸突生長分期中與細胞長度及分支數目具有相關性,同時彈性係數於生長初期時為0.98±0.48 kPa;中期為1.27±0.58 kPa;末期則為2.43±1.01 kPa,呈現增加的趨勢。此外,軸突中端貼附力(3.79±1.63 nN)小於軸突近端(16.38±2.43 nN)及生長錐(11.68±1.76 nN)部份,且藉由塗覆膠原蛋白基質可有效增加軸突本身貼附性質。

    The use of nerve conduit plays an important role on auxiliary regeneration during the therapy of injured peripheral nerve. How to improve the efficiency of axon regeneration of the injured peripheral nerves in the nerve conduit is an important issue. This study focuses on normal axon to observe the biological and biomechanical variations during the growth process.
    PC-12 neuron-like cell is the experimental subject and the axon growth process was recorded by adding Nerve Growth Factor (NGF) to induce axon growth. The effect of electric fields stimulation was also observed. To utilize Atomic Force Microscopy (AFM), the viscoelastic properties of axon were measured by using indentation test during the growth process and the difference of adhesion force on axon was also measured.
    The results show that axon growth process has correlation with cell body length and branch number, the increasing trend of elastic modulus during axon growth process is also presented (initial stage: 0.98±0.48 kPa, middle stage: 1.27±0.58 kPa, last stage: 1.27±0.58 kPa). Furthermore, the adhesion force on the middle axon (3.79±1.63 nN) is smaller than the proximal axon (16.38±2.43 nN) and growth cone (11.68±1.76 nN) and adhesion force can be increased by coating collagen as the substrate.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 符號表 ix 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 10 1.3 研究動機及目的 14 1.4 本文架構 15 第二章 方法及實驗 16 2.1 PC-12類神經細胞培養與細胞軸突誘導程序 16 2.1.1 PC-12類神經細胞培養程序 16 2.1.2 PC-12類神經細胞軸突誘發程序 18 2.2 環境控制系統及細胞曠時攝影 21 2.3 原子力顯微鏡(Atomic Force Microscope, AFM) 25 2.3.1 原子力顯微鏡量測及成像原理 25 2.3.2 原子力顯微鏡硬體架構 26 2.3.3 原子力顯微鏡力量感測系統 29 2.3.4 懸臂樑探針彈性係數校正 30 2.3.5 感測電壓 - 探針變形量係數校正 33 2.3.6 壓電掃瞄器潛變特性校正 36 2.4 細胞力學模型 44 2.4.1 Bilodeau模型 45 2.4.2 類線性黏彈性模型(Quasi-Linear Viscoelastic model, QLV) 45 2.5 PC-12類神經細胞軸突生長實驗設計 47 2.6 PC-12類神經細胞軸突機械性質探測實驗設計 50 2.7 PC-12類神經細胞軸突貼附性質探測實驗設計 55 第三章 實驗結果 58 3.1 PC-12類神經細胞軸突生長實驗結果 58 3.2 PC-12類神經細胞軸突機械性質探測實驗結果 82 3.3 PC-12類神經細胞軸突貼附性質探測實驗結果 91 第四章 討論 103 4.1 神經細胞軸突生長機制 103 4.1.1 軸突生長過程 103 4.1.2 軸突生長與電刺激關係 106 4.2 軸突生長與機械性質變化 107 4.3 軸突各區域貼附力比較 108 4.4 實驗量測誤差探討 111 4.4.1壓電制動器潛變現象影響 111 4.4.2壓印力量對機械性質量測影響 112 第五章 結論與建議 115 5.1 結論 115 5.2 建議 116 參考文獻 117

    [1] Gregory R.D. Evans,“Peripheral Nerve Injury: A Review and Approach to Tissue Engineering Constructs,” WILEY-LISS, INC. 2001.
    [2] 楊炯琳, “周邊神經再生研究的發展與展望” 化工資訊與商情月刊第2期.
    [3] Carole A. Heath and Gregory E. Rutkowaki,“The development of bioartificial nerve grafts for peripheral-nerve regeneration,”TIBTECH, Vol 16, 1998.
    [4] R. Midha, M.D., M.Sc., F.R.C.S.(C),“PERIPHERAL NERVE: APPROACH TO THE PATIENT,”Youman’s Neurological Surgery, 5th edition, Dec. 1999.
    [5] K. Matsumoto, K. Ohnishi, T. Kiyotani, T. Sekine, H. Ueda, T. Nakamura, K. Endo and Y. Shimizu, “Peripheral nerve regeneration across an 80-mm gap bridged by a polyglycolic acid (PGA)–collagen tube filled with laminin-coated collagen fibers: a histological and electrophysiological evaluation of regenerated nerves,” Brain Research Vol. 868, No. 2, pp. 315-328, 2000.
    [6] H. Hertz, “Über die berührung fester elastische körper,” Jreine Angew. Mathematick, Vol.92, pp. 156-171, 1882.
    [7] I.N. Sneddon, “The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of. arbitrary profile,” int ., J.Eng sci, Vol. 3, pp. 37-41, 1965.
    [8] Y.C. Fung, “Biomechanics: Mechanical Properties of Living Tissues, 2nd ed, ”, Springer-Verlag, pp. 277-292, 1972.
    [9] A. Pugh, Introduction to tensegrity, University of California, Berkeley, 1976.
    [10] G.G. Bilodeau, “Regular Pyramid Punch Problem.” Journal of Applied Mechanics, Vol. 59, pp. 519-523, 1992.
    [11] D.C. Kevin, J.S. Alan and F.C. Yin, ” Non-Hertzian Approach to Analyzing Mechanical Properties of Endothelial Cells Probed by Atomic Force Microscopy,” Journal of Biomechanical Engineering, Vol. 128, pp. 176-184, 2006.
    [12] M. Radmacher, M. Fritz, C.M. Kacher, J. P. Cleveland, and P. K. Hansma,“Measuring the Viscoelastic Properties of Human Platelets with the Atomic Force Microscope,” Biophysical Journal Vol. 70, pp. 556-567, Jan. 1996.
    [13] M. Radmacher,“Measuring the Elastic Properties of Biological Samples with the AFM,” IEEE ENGINEERING IN MEDICINE AND BIOLOGY, Vol. 97, 1997.
    [14] R.E. Mahaffy, C.K. Shih, F.C. MacKintosh and J. Käs,“Scanning Probe-Based Frequency-Dependent Microrheology of Polymer Gels and Biological Cells,” PHYSICAL REVIEW LETTERS, Vol. 85, No. 4, Jul. 2000
    [15] J. Alcaraz, L. Buscemi, M. Grabulosa, X. Trepat, B. Fabry, R. Farré, and D. Navajas,“Microrheology of Human Lung Epithelial Cells Measured by Atomic Force Microscopy,” Biophysical Journal, Vol. 84, pp. 2071–2079, Mar. 2003.
    [16] R.E. Mahaffy, S. Park, E. Gerde, J. Käs and C.K. Shih,“Quantitative Analysis of the Viscoelastic Properties of Thin Regions of Fibroblasts Using Atomic Force Microscopy,” Biophysical Journal, Vol. 86, pp. 1777–1793, Mar. 2004.
    [17] S. Park, D. Koch, R. Cardenas, J. Käs and C.K. Shih,“Cell Motility and Local Viscoelasticity of Fibroblasts,” Biophysical Journal, Vol. 89, pp. 4330–4342, Dec. 2005.
    [18] S. Sen, S. Subramanian, and D.E. Discher,“Indentation and Adhesive Probing of a Cell Membrane with AFM: Theoretical Model and Experiments,” Biophysical Journal, Vol. 89, pp. 3203–3213, Nov. 2005.
    [19] F. Rico, P. Roca-Cusachs, N. Gavara, R. Farré, M. Rotger, and D. Navajas,“Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips,” PHYSICAL REVIEW, E 72, 021914 , 2005.
    [20] B.A. Smith, B. Tolloczko, J.G. Martin and P. Grütter,“Probing the Viscoelastic Behavior of Cultured Airway Smooth Muscle Cells with Atomic Force Microscopy: Stiffening Induced by Contractile Agonist,” Biophysical Journal, Vol. 88, pp. 2994–3007, Apr. 2005.
    [21] V. Lulevich, T. Zink, Huan-Yuan Chen, Fu-Tong Liu, and Gang-yu Liu,“Cell Mechanics Using Atomic Force Microscopy-Based Single-Cell Compression,” Langmuir, Vol. 22, pp. 8151-8155, 2006.
    [22] P. Cañadas, S. Wendling-Mansuy, D. Isabey,“Frequency Response of a Viscoelastic Tensegrity Model: Structural Rearrangement Contribution to Cell Dynamics,” Journal of Biomechanical Engineering, Vol. 128, pp. 487, Aug. 2006.
    [23] E.L. Grzywa, A.C. Lee, G.U. Lee, D.M. Suter,“High Resolution Analysis of Neuronal Growth Cone Morphology by Comparative Atomic Force and Optical Microscopy,” Journal of Neurobiology, Jun. 2006.
    [24] P. Roca-Cusachs, I. Almendros, R. Sunyer, N. Gavara, R. Farré, and D. Navajas,“Rheology of Passive and Adhesion-Activated Neutrophils Probed by Atomic Force Microscopy,” Biophysical Journal, Vol. 91, pp. 3508–3518, Nov. 2006.
    [25] E.M. Darling, S. Zauscher and F. Guilak,“Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy,” OsteoArthritis and Cartilage, Vol. 14, pp. 571-579, 2006.
    [26] E.M. Darling, S. Zauscher, J.A. Block and F. Guilak,“A Thin-Layer Model for Viscoelastic, Stress-Relaxation Testing of Cells Using Atomic Force Microscopy: Do Cell Properties Reflect Metastatic Potential?” Biophysical Journal, Vol. 92, pp. 1784–1791 Mar. 2007.
    [27] B.A. Smith, H. Roy, P.D. Koninck, P. Grütter, and Y.D. Koninck,“Dendritic Spine Viscoelasticity and Soft-Glassy Nature: Balancing Dynamic Remodeling with Structural Stability,” Biophysical Journal, Vol. 92, pp. 1419–1430, Feb. 2007.
    [28] P. Attard,“Measurement and interpretation of elastic and viscoelastic properties with the atomic force microscope,” J. Phys.: Condens. Matter 19, pp. 473201, 2007.
    [29] 李宗翰, “單軸應變對3T3纖維母細胞機械特性影響之研究”, 國立成功大學微機電系統工程研究所碩士論文, 2005.
    [30] 張嘉峰, “應用原子力顯微術於PC-12類神經細胞之生物力學研究”, 國立成功大學微機電系統工程研究所碩士論文, 2006.
    [31] 馮俊雄,“應用原子力顯微鏡與免疫螢光染色法探討PC-12類神經細胞之黏彈力學性質”國立成功大學機械工程研究所碩士論文, 2007.
    [32] W.R. Trickey, G.M. Lee and F. Guilak, “Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage,” J. Orthop Res, Vol. 18, No. 6, pp. 891-898, 2000.
    [33] D. Shin and K. Athanasiou “Cytoindentation for obtaining cell biomechanical properties,” J. Orthop Res, Vol. 17, No. 6, pp. 880-890, 1999.
    [34] L.A Greene and A.S. Tischler, “Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor,” Proc Natl Acad Sci USA, Vol.73, pp. 2424-8, 1976.
    [35] TOKAI HIT,“Stage Top Incubator-Instructions Manual,”
    [36] Veeco Instruments, https://www.veecoprobes.com
    [37] J.E. Sader, I. Larson , P. Mulvaney and L.R. White, ’’Method for the Calibration of Atomic Force Microscope Cantilevers,“ Rev.Sci. Vol. 66, pp. 3789-3798, 1995.
    [38] C.D. McCaig, L. Sangster, and R. Stewart,“Neurotrophins Enhance Electric Field-Directed Growth Cone Guidance and Directed Nerve Branching,” DEVELOPMENTAL DYNAMICS, Vol. 217, pp.299–308, 2000.
    [39] A.M. Rajnicek, L.E. Foubister and C.D. McCaig,“Temporally and spatially coordinated roles for Rho, Rac, Cdc42 and their effectors in growth cone guidance by a physiological electric field,” Journal of Cell Science, Vol. 119, pp. 1723-1735, Jan. 2006.
    [40] A.M. Rajnicek, L.E. Foubister and C.D. McCaig,“Growth cone steering by a physiological electric field requires dynamic microtubules, microfilaments and Rac-mediated filopodial asymmetry,” Journal of Cell Science, Vol. 119, pp. 1736-1745, Jan. 2006.
    [41] J.H. Hoh and A. Engel,“Friction Effects on Force Measurements with an Atomic Force Microscope,” Langmuir, Vol. 9, No. 11, 1993.
    [42] J. Alcaraz, L. Buscemi, M. Puig-de-Morales, J. Colchero, A. Baró, and D. Navajas,“Correction of Microrheological Measurements of Soft Samples with Atomic Force Microscopy for the Hydrodynamic Drag on the Cantilever,” Langmuir, Vol. 18, pp. 716-721, 2002.
    [43] H. Janovjak, J. Struckmeier, D.J. Müller,“Hydrodynamic effects in fast AFM single-molecule force measurements,” Eur Biophys J. Vol.34, pp.91–96, 2005.
    [44] F. Gittes, B. Mickey, J. Nettleton, and J. Howard, “Flexural Rigidity of Microtubules and Actin Filaments Measured from Thermal Fluctuations in Shape,” The Journal of Cell Biology, Vol. 120, No. 4, pp. 923-934, 1993.
    [45] A.R Vancha, S. Govindaraju, K. VL Parsa, M. Jasti, M. González-García and R. P Ballestero,“Use of polyethyleneimine polymer in cell culture as attachment factor and lipofection enhancer,” BMC Biotechnology, Oct. 2004.
    [46] D. Croft, G. Shed, S. Devasia, “Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application,” Tran ASME, J. of Dynamic Systems, Measurement and Control, Vol. 123, pp. 35, Mar. 2001.

    下載圖示 校內:2013-08-11公開
    校外:2013-08-11公開
    QR CODE