| 研究生: |
鄭景鴻 Cheng, Ching-Hung |
|---|---|
| 論文名稱: |
雷射熔蝕生成奈米金屬粒子之研究 The formation of nano-scale metallic particles in laser ablation |
| 指導教授: |
林震銘
Lin, Jehnming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 奈米粒子 、雷射熔蝕 |
| 外文關鍵詞: | laser ablation, nanoparticle |
| 相關次數: | 點閱:105 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本文研究目的是以雷射熔蝕生成奈米鎳微粒,並且針對不同流場特性對於奈米鎳微粒的成核成長現象以數值分析及實驗進行研究並進一步的進行分析與比較。在理論分析方面使用計算流體力學軟體FLUENT計算在真空腔中的流場特性及速度分佈,在奈米微粒成長理論是使用考慮粒子碰撞重熔行為的金屬蒸氣冷凝及單體分子濃度的平衡關係式、成核率方程式以及相關的奈米粒子成長尺寸的計算模型。並使用有限差分法將奈米微粒成長理論中的數學模型離散並撰寫Fortran程式語言以求得生成粒子過程中的粒徑變化,最後將真空腔中計算所得之流場速度分佈代入到奈米微粒成長理論的計算中以瞭解流場特性對於生成粒徑及粒子成長機制的影響。在實驗部份則是採用Q-switch Nd-YAG雷射在真空腔體中對鎳金屬靶材加熱並將生成的金屬蒸氣使用氬氣予以冷凝並使用試片於予以收集並進行掃描式電子顯微鏡(Scanning Electron Microscope)分析。在文中可以得到雷射熔蝕生成奈米鎳微粒時粒徑的變化,並且探討流場特性及不同參數下所造成的影響。在本文中可以提出對於使用雷射熔蝕生成奈米鎳微粒完整的噴流理論分析並以實驗相互印證以作為日後從事生成奈米粒子相關研究的重要依據。
Abstract
In this study the synthesis of metallic nanoparticles by evaporation is generated by a pulse laser irradiated on a metallic target with a rapid condensation in an inert jet flow condenser. In the simulation analysis of local ablation phenomenon in gas plume, which was induced by laser ablation, small particles with narrow distributions were expected in the experiment. The over-heated vapor may become the plasma and it will affect the particle generation significantly. This study is going to apply the computational fluid dynamics(CFD), numerical analysis to simulate the condensation process of the metallic particles under laser irradiating, in order to understand the formation mechanism of the nanoparticles for broader applications to the mass production. The flow analysis is used to investigate the process design in macroscopic and microscopic views respectively to predict the flow characteristics in the laser ablation and condensation for nanoparticle formation.
[1] Sheldon K, Friedlander, Smoke, Dust, and Haze Fundamentals of Aerosol Dynamics, Oxford University Press, New York pp.23, 2000.
[2] 張立德、牟季美, 奈米材料和奈米結構, 滄海書局, 臺灣, pp95 民國91年。
[3] Adent, M. Beyer E. Herziger, G. and Kunze, H. “Laser-induced vaporization of a metal surface”, Journal of physics D: applied physics, Vol.25, pp.57-65, 1992.
[4] Gnedovets, A. G.., Kul’batskii, E. B., Smurov, I. and Glamant, G.., “Particles synthesis in erosive laser plasma in a high pressure atmosphere”, Applied Surface Science, Vol. 96-98, pp. 272-279, 1996.
[5] Bulgakov, A. V. and Bulgakov, N. M., “Dynamics of laser-induced plasma expansion into an ambient gas during film deposition”, Journal of physics D: applied physics, Vol. 28, pp. 1710-1718, 1995.
[6] Aden, M., Kreutz, E. W. and Voss, A., “Laser-induce plasma formation during pulsed laser deposition”, Journal of physics D: applied physics, Vol. 26, pp. 1545-1553, 1993.
[7] Yang, X. C., Riehemann, W., Dubiel, M. and Hofmeister, H., “Nanoscaled ceramic powders produced by laser ablation”, Materials Science and Engineering B, Vol. 95, pp. 299-307, 2002.
[8] Hass, V., Birringer, R., Gleiter, H. and Pratsinis, S. E., “Synthesis of nanostructured powders in an aerosol flow condenser”, Journal of Aerosol Science, Vol. 28, No. 8, pp. 1443-1453, 1997.
[9] Koch, W., Windt, H. and Karfich, N., “Modeling and experimental evaluation of an aerosol generator for very high number currents based on a free turbulent jet”, Journal of Aerosol Science, Vol. 24, No. 7, pp. 909-918, 1993.
[10] Brock, J. R., Kuhn, P. J. and Zehavi, D., “Condensation aerosol formation and growth in a laminar coaxial jet: experimental”, Journal of Aerosol Science, Vol. 17, No. 1, pp. 11-22, 1986.
[11] Lesniewski, T. K. and Friedlander, S. K., “The effect of turbulence on rates of particle formation by homogeneous nucleation”, Aerosol Science and Technology, Vol. 23, pp. 174-182, 1995.
[12] Lesniewski, T. K. and Koch, W., “Production of rounded Ti- and Al-hydroxide particles in a turbulent jet by coagulation-controlled growth followed by rapid coalescence”, Journal of Aerosol Science, Vol. 29, No. 1-2, pp. 81-98, 1998.
[13] Juang, C. B., Hong C., Becker, M. F., Keto, J. W. and Brock, J. R., “Synthesis of nanometer glass particles by pulsed-laser ablation of microspheres”, Applied Physics Letters, Vol. 65, No. 1, pp. 40-42, 1994.
[14] Seol, K. S., Camata, R. P., and Takeuchi, K., “Study on the formation of silicon nanoparticles during laser ablation using a low-pressure differential mobility analyzer”, Journal of Aerosol Science, Vol. 30, Suppl. 1, pp. S467-S468, 1999.
[15] Takehito Yoshida, Shigeru Takeyama, Yuka Yamada, and Katsuhiko Mutoh, “Nanometer-sized silicon crystallites prepared by excimer laser ablation in constant pressure inert gas”, Applied Physics Letters, Vol. 68, No. 13, pp. 1772-1774, 1996.
[16] EL-Shall, M. S., Graiver, D. and Pernisz, U., “Synthesis and characterization of nanoscale zinc oxide particles: I. Laser vaporization/condensation technique”, Nanostructured Materials, Vol. 6, pp. 297-300, 1995.
[17] Rajaratnam, N., “Turbulent Jets”, Elsevier scientific pub.co.,1976
[18] Bejan, A., “Convection Heat Transfer”, Wiley, New York, 1984.
[19] FLUENT 5 User Guide Volume 2,Fluent Inc. 1998.
[20] Peyret R. and Taylor T. D., ” Computational methods for fluid flow”, Springer-Verlag, New York, 1983.
[21] Panda, S. and Pratsinis S. E., “Modeling the synthesis of aluminum particles by evaporation-condensation in a aerosol flow reactor”, Nanostructured Materials, Vol. 5, No. 7-8, pp. 755-767, 1995.
[22] Johannessen Tue, “Synthesis of Nano-Particles in Flames” Department of Chemical Engineering Technical University of Denmark, Lyngby, Denmark, pp10, 1999
[23] Tsantilis, S., Pratsinis, S.E. and Hass, V. ,”Simulation of synthesis of palladium nanoparticles in a jet aerosol flow condenser”,J.Aerosol Sci.Vol.30.No.6,pp785-803,1999.
[24] Gale.William F, Totemeier,Terry C, “Smithells metals reference book”,Elsevier Butterworth-Heinemann,Amsterdam,2004
[25] Lide,D.R.,”CRC Handbook of chemistry and physics”,73rd edition, CRC Press,Boca Raton.