| 研究生: |
江啟賓 Jiang, Ci-Bin |
|---|---|
| 論文名稱: |
基於誘捕系統日誌相似度全球殭屍網路特徵分析之研究 Exploring Global Botnet Patterns based on Honeypot Log Similarity |
| 指導教授: |
李忠憲
Li, Jung-Shian |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 殭屍網路 、本體論 、快速變動 、誘捕系統 、關聯式規則 |
| 外文關鍵詞: | Botnet, ontology, fast-flux, honeypot, association rule |
| 相關次數: | 點閱:155 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
殭屍網路的活動持續以驚人的速度增長,對世界各地的網路系統安全造成重大威脅。殭屍網路具有相當毀滅性的,例如信用卡竊取或分散式阻斷服務攻擊。因此,了解殭屍網路的行為,拓撲結構是很重要的。因此,我們提出了一個新的本體論和一套推理規則,透過機器學習演算法,以來自動判斷殭屍網路拓撲圖。實驗結果顯示,該方法跟之前的研究來比用最短的推理時間和高準確度來判斷殭屍網路拓樸圖。
駭客越來越多使用快速變動技術來提高惡意程式生命週期,以進行各種進階持續性威脅(APT)活動。這種活動一般是針對商務或政治動機的國家或組織,並且有可能造成巨大破壞的潛力。因此,研究快速變動的服務網路,並找到可能的攻擊行為,這是必不可少的。隨著誘捕系統日誌和關聯式規則探勘,該機制可以減少人的努力和整個系統可以自動運作。我們實驗的結果顯示,該預測系統是可運作的,用來保護資產攻擊或誤報。
Botnet activity continues to grow at an alarming rate and poses a major threat to the security of networked systems around the world. Botnet malfeasance is quite devastating, such as credit card stealing or DDoS. So it is important to understand the botnet behavior, topology and structure. Hence, we propose a new ontology and a set of inference rules to facilitate the automatic identification of the botnet topology by means of a machine learning algorithm. The results presented in this dissertation indicate that the proposed methodology provides a viable means of determining botnet topology with low inference time and high degree of accuracy compared to previous research works.
Hackers have increasingly used fast-flux techniques to extend the lifetime of malware networks in order to conduct various Advanced Persistent Threat (APT) activities. Such activities typically target nations and or organizations for business or political motives and have the potential to cause immense disruption. Thus, it is essential to study the fast-flux service network and find possible attack behaviors. With honeypot logs and association rule mining, the proposed mechanism can reduce human effort and the entire system can operate automatically. The results of our experiments indicate that the prediction system is workable for protecting assets from attacks or misuse.
[1] DAMBALLA: Top 10 Botnet Threat Report. http://www.damballa.com/downloads/r_pubs/Damballa_2010_Top_10_Botnets_Report.pdf, 2013.
[2] The Anti-Botnet Project of TAnet, HTTP://WWW.ANTI-BOTNET.EDU.TW, 2013.
[3] Dshield.org, http://dshield.org, 2013.
[4] Y. Gao, Z. Li, and Y. Chen, A dos resilient flow-level intrusion detection approach for high-speed networks, In Proceedings of the 26th IEEE International Conference on Distributed Computing Systems, p. 39, 2006.
[5] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagl, K. Levitt, C. Wee, R. Yip, and D. Zerkle, GrIDS - a graph based intrusion detection system for large networks, In Proceedings of the 19th National Information Systems Security Conference (NISS ’96), pp. 361-370, 1996.
[6] N. Duffield, P. Haffner; B. Krishnamurthy, H. Ringberg, Rule-Based Anomaly Detection on IP Flows, IEEE INFOCOM, pp. 424-432, 2009.
[7] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras and B. Stiller, An Overview of IP Flow-Based Intrusion Detection, IEEE COMMUNICATIONS SURVEYS & TUTORIALS, vol.12, no.3, 2010.
[8] N. Cuppens-Boulahia, F. Cuppens, J. E. Lopez de Vergara, E. Vazquez, J. Guerra, H. Debar, An ontology-based approach to react to network attacks, Risks and Security of Internet and Systems, pp. 27-35, 2008.
[9] P. Holgado, J. E. Lopez de Vergara, V. A. Villagra, I. Sanz, A. Amaya, Sharing information about security alerts using semantic web technologies, Network and Service Management (CNSM), 2010 International Conference, pp. 270-273, 2010.
[10] C. Livadas, B. Walsh, D. Lapsley, T. Strayer, Using Machine Learning Techniques to Identify Botnet Traffic, In 2nd IEEE LCN Workshop on Network Security (WoNS'2006), pp. 967-974, 2006.
[11] C. S. Chen, T. C. Liu, C. H. Su, Exploring the Correlation between P2P Applications and Network Architecture, In Proceedings of ICACT, vol.1, pp. 171-175, 2009.
[12] B. Wang, X. Ju, S. Zhang, A distributed intrusion detect model based on alert data correlation analysis, Computer Application and System Modeling (ICCASM), 2010 International Conference, vol.3, pp.669-673, 2010.
[13] DAMBALLA: Botnet Communication Topologies, http://www.damballa.com/downloads/r_pubs/WP%20Botnet%20Communications%20Primer%20%282009-06-04%29.pdf, 2013.
[14] L. Spitzner, Honeypots: tracking hackers; Addison-Wesley: Canada, 2002; 1-480.
[15] B. Cheswick, An Evening with Berferd in which a cracker is Lured, Endured, and Studied. In Proc. Winter USENIX Conference, San Francisco, 1992, January 20-24; 163-174.
[16] Know Your Enemy: Honeynets, http://old.honeynet.org/papers/honeynet. Accessed 8 October 2015.
[17] The Honeynet Project, https://www.honeynet.org. Accessed 27 June 2015.
[18] The Honeynet Project Taiwan Chapter, https://www.honeynet.org/chapters/taiwan. Accessed 27 June 2015.
[19] Internet2: About Internet2 report, http://www.internet2.edu/resources/AboutInternet2.pdf, 2013.
[20] Zeus and Spyeye Tracker, http://www.abuse.ch, 2013.
[21] M. Roesch: Snort, intrusion detection system, http://www.snort.org, 2013.
[22] WinSnort: Windows Intrusion Detection System (WinIDS), http://www.winsnort.com, 2013.
[23] Jess: The rule engine for the Java Platform, http://www.jessrules.com, 2013.
[24] T. Ahmed, B. Oreshkin, and M. J. Coates, Machine learning approaches to network anomaly detection, Second Workshop on Tackling Computer Systems Problems with Machine Learning Techniques (SysML), Cambridge, MA, 2007.
[25] C. Livadas, B. Walsh, D. Lapsley, T. Strayer, Using Machine Learning Techniques to Identify Botnet Traffic, In 2nd IEEE LCN Workshop on Network Security (WoNS'2006), pp. 967-974, 2006.
[26] A. Lakhina, M. Crovella, and C. Diot, Mining anomalies using traffic feature distributions, In SIGCOMM 05, pp. 217-228, 2005.
[27] T. Shon and J. Moon, A hybrid machine learning approach to network anomaly detection, Information Science, vol.18, pp.3799-3821, 2007.
[28] A. W. Moore, and D. Zuev, Internet traffic classification using bayesian analysis techniques, In SIGMETRICS: Proceedings of the 2005 ACM SIGMETRICS international conference on Measurement and modeling of computer systems , New York, USA, pp. 50, 2005.
[29] Z. Li, A. Goyal, Y. Chen, V. Paxson, Towards Situational Awareness of Large-Scale Botnet Probing Events, IEEE Trans. on information forensics and security, vol.1, no.6, pp.175-188, 2011.
[30] Y. Qi, L. Xu, B. Yang, Y. Xue and J. Li, Packet Classification Algorithms: From Theory to Practice, IEEE INFOCOM, pp.648-656, 2009.
[31] C. A. Catania, C. G. Garino, Automatic network intrusion detection: Current techniques and open issues, Computers and Electrical Engineering, vol.38, no.5, pp.1062-1072, 2012.
[32] C. B. Jiang and J. S. Li, IP Flow Data Correlation with Inference Rules, Advanced Materials Research, vol.403, no.408, pp.1211-1213, 2012.
[33] V. Mateos, V. A. Villagrá, F. Romero, J. Berrocal, Definition of response metrics for an ontology-based Automated Intrusion Response Systems, Computers and Electrical Engineering, vol.38, no.5, pp.1102-1114, 2012.
[34] J. E. López de Vergara, E. Vázquez, A. Martin, S. Dubus, M. N. Lepareux, Use of ontologies for the definition of alerts and policies in a network security platform, Journal of Networks, vol.4, no.8, pp.720-733, 2009.
[35] J. E. López de Vergara, V.A. Villagrá, P. Holgado, E. de Frutos, I. Sanz, A semantic web approach to share alerts among Security Information Management Systems, 2009.
[36] J. Undercoffer, A. Joshi, and A. Pinkston, Modeling computer attacks: an ontology for intrusion detection, In: 6th International Symposium on Recent Advances in Intrusion Detection, pp. 113-135, 2003.
[37] A. Guerrero, V. Villagr´a, and J. B. J.E. L´opez de Vergara, A. S´anchez-Maci´, An Ontology-based Policy Refinement Using SWRL Rules for Management Information Definitions in OWL, In: Lecture Notes in Computer Science, vol.3775, pp.12-23, 2005.
[38] Dshield.org, http://dshield.org, 2013.
[39] IP Flow Datasets, http://www.hsnet.ee.ncku.edu.tw/Project/botd-dataset, 2010.
[40] Know Your Enemy: Fast-Flux Service Networks. Retrieved July 21, 2015, from http://www.honeynet.org/papers/ff.
[41] J. Wu, L. Zhang, J. Liang, & S. Qu. (2010). A comparative study for fast-flux service networks detection. Networked Computing and Advanced Information Management (NCM), 2010 Sixth International Conference.
[42] A.K. Tyagi, and G. Aghila. (2012). Detection of fast flux network based social bot using analysis based techniques. Data Science & Engineering (ICDSE).
[43] H. T. Wang, C. H. Mao, K. P. Wu, H. M. Lee. (2012). Real-time Fast-flux Identification via Localized Spatial Geolocation Detection. IEEE 36th International Conference on Computer Software and Applications.
[44] T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling. (2008). Detection and Mitigation of Fast-Flux Service Networks. Proceedings of the 15th Annual Network & Distributed System Security Symposium.
[45] C. H. Hsu, C. Y. Huang, K. T. Chen. (2010). Fast-flux bot detection in real time. Proceedings of the 13th international conference on Recent Advances in Intrusion Detection (RAID).
[46] E. Passerini, R. Paleari, L. Martignoni, & D. Bruschi. (2008). FluXOR: detecting and monitoring fast-flux service networks. Proceedings of the 5th Conference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA).
[47] A. Caglayan, M. Toothaker, D. Drapaeau, D. Burke, & G. Eaton. (2009). Real-time detection of fast flux service networks. Cybersecurity Applications & Technology Conference for Homeland Security.
[48] S. Y. Huang, C. H. Mao, H. M. Lee. (2010). Fast-flux service network detection based on spatial snapshot mechanism for delay free detection. Proceedings of the 5th ACM Symposium on Information, Computer and Communications Security.
[49] W. He, G. Hu, Y. Zhou. (2012). Large-scale IP network behavior anomaly detection and identification using substructure-based approach and multivariate time series mining. Telecommunication Systems, 50(1), 1-13.
[50] A. Fitriah, A. Kadir, R. Azrina, R. Othman, and N. A. Aziz. (2012). Behavioral Analysis and Visualization of Fast-Flux DNS. European Intelligence and Security Informatics Conference.
[51] X. Hu, M. Knysz, and K. G. Shin. (2011). Measurement and Analysis of Global IP-Usage Patterns of Fast-Flux Botnets. IEEE INFOCOM.
[52] H. T. Lin, Y. Y. Lin and J. W. Chiang. (2013). Genetic-based Real-time Fast-Flux Service Networks Detection. Elsevier Computer Networks, special issue on Botnet Activity: Analysis, Detection and Shutdown, 57(2), 501-513.
[53] C. Warrender, S. Forrest, B. Pearlmutter, Detecting intrusions using system calls: Alternative data models. In Security and Privacy. Proceedings of the IEEE Symposium on, Oakland, CA, 1999, May; 133-145.
[54] S. Forrest, S. Hofmeyr, A. A. Somayaji, T. A., Longstaff, A sense of self for unix processes. Proceedings of the 1996 IEEE Symposium on Security and Privacy, Oakland, CA , 1996, May; 120-128.
[55] S. A. Hofmeyr, S. Forrest, A. Somayaji, Intrusion detection using sequences of system calls. Journal of computer security 1998; 6(3) : 151-180.
[56] P. Helman, J. Bhangoo, A statistically based system for prioritizing information exploration under uncertainty. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on 1997; 27(4) : 449-466.
[57] W. Lee, S. J. Stolfo, Data mining approaches for intrusion detection. In Proceedings of the 7th conference on USENIX Security Symposium, San Antonio, Texas, 1998, January; 7 : 26-29.
[58] W. Lee, S. J. Stolfo, K. W. Mok, A data mining framework for building intrusion detection models. Security and Privacy, Proceedings of the 1999 IEEE Symposium on, Oakland, CA, 1999, May; 120-132.
[59] A. K. Ghosh, A. Schwartzbard, A Study in Using Neural Networks for Anomaly and Misuse Detection. Proceedings of the 8th conference on USENIX Security Symposium, Washington, D.C., 1999, August; 8 : 141-152.
[60] G. Helmer, J. Wong, V. Honavar, L. Miller, Automated discovery of concise predictive rules for intrusion detection. Journal of Systems and Software 2002; 60(3) : 165–175.
[61] L.C. Wuu, C.H. Hung, S.F. Chen, Building intrusion pattern miner for Snort network intrusion detection system. Journal of Systems and Software 2007; 80(10) : 1699-1715.
[62] W. Wang, X. Zhang, S. Gombault, Constructing attribute weights from computer audit data for effective intrusion detection. Journal of Systems and Software 2009; 82(12) : 1974-1981.
[63] Z. H. Tian, B. X. Fang, X. C. Yun, An architecture for intrusion detection using honey pot. Machine Learning and Cybernetics, 2003 International Conference on, Xi'an, 2003, November; 4 : 2096-2100.
[64] B. G. Tudorica, C. Bucur, A comparison between several NoSQL databases with comments and notes. Roedunet International Conference (RoEduNet) 2011 10th, Iasi, 2011, June 23-25; 1-5.
[65] U. Thakar, S. Varma, A. K. Ramani, HoneyAnalyzer–analysis and extraction of intrusion detection patterns & signatures using honeypot. In Proceedings of the Second International Conference on Innovations in Information Technology (IIT’05), Dubai, UAE, 2005, September; 26-28.
[66] T. S. Patel, M. Panchal, D. Ladumor, J. Kapadiya, P. Desai, A. R. Prajapati. An analytical study of various frequent itemset mining algorithms. In International Science Congress Association on Research Journal of Computer and Information Technology Sciences 2013; 1(1) : 6-9.
[67] J. Han, J. Pei, Y. Yin, Mining Frequent Patterns without Candidate Generation. Proceedings of the 2000 ACM SIGMOD international conference on Management of data 2000; 29(2) : 1-12.
[68] C. Kreibich, J. Crowcroft, Honeycomb: creating intrusion detection signatures using honeypots. ACM SIGCOMM Computer Communication Review 2004; 34(1) : 51-56.
[69] F. Dressler, W. Jaegers, R. German, Flow-based worm detection using correlated honeypot logs. Communication in Distributed Systems (KiVS), ITG-GI Conference, Bern, Switzerland, 2007, February 26 - March 2; 1-6.
[70] H. Artail, H. Safa, M. Sraj, I. Kuwatly, Z. A. Masri, A hybrid honeypot framework for improving intrusion detection systems in protecting organizational networks. Computers & Security 2006; 25(4) : 274-288.
[71] M. Drašar, M. Vizváry, J. Vykopal, Similarity as a central approach to flow-based anomaly detection. International Journal of Network Management 2014; 24(4) : 318-336.
[72] A.N. Singh, R.X. Joshi, A honeypot system for efficient capture and analysis of network attack traffic. International Conference on Signal Processing, Communication, Computing and Networking Technologies (ICSCCN), Thuckafay, 2011, July 21-22; 514-519.
[73] P. Jain, A. Sardana, A hybrid honeyfarm based technique for defense against worm attacks. Information and Communication Technologies (WICT), Mumbai, 2011, December 11-14; 1084-1089.
[74] Y. Alosefer, O.F. Rana, Predicting client-side attacks via behaviour analysis using honeypot data. 7th International Conference on Next Generation Web Services Practices (NWeSP), Salamanca, 2011, October 19-21; 31-36.
[75] X. Ma, J. Zhu, Z. Wan, J. Tao, X. Guan, Q. Zheng, Honeynet-based collaborative defense using improved highly predictive blacklisting algorithm. 8th World Congress on Intelligent Control and Automation (WCICA), Jinan, 2010, July 7-9; 1283-1288.
[76] N. Zhao, X. Zhang, The Worm Propagation Model and Control Strategy Based on Distributed Honeynet. International Conference on Computer Science and Software Engineering, Wuhan, Hubei, 2008, December 12-14; 868-871.
[77] W. W. Xia, H. F. Wang. Prediction model of network security situation based on regression analysis. IEEE International Conference on Wireless Communications, Networking and Information Security (WCNIS), Beijing, China, 2010, June 25-27; 616-619.
[78] Z. Zhan, M. Xu, S. Xu, Characterizing Honeypot-Captured Cyber Attacks: Statistical Framework and Case Study. IEEE Transactions on Information Forensics and Security 2013; 8(11) : 1775-1789.
[79] D. Kwon, J.W.K. Hong, H. Ju, DDoS attack forecasting system architecture using Honeynet. Network Operations and Management Symposium (APNOMS), Seoul, 2012, September 25-27; 1-4.
[80] E. Alomari, S. Manickam, B. B. Gupta, S. Karuppayah, R. Alfaris, Botnet-based distributed denial of service (DDoS) attacks on web servers: classification and art. International Journal of Computer Applications 2012; 49(7) : 24-32.
[81] NORSE Live attack, http://map.norsecorp.com . Accessed 27 June 2015.
[82] Know Your Enemy: Honeynets, http://old.honeynet.org/papers/honeynet. Accessed 8 October 2015.
[83] T. Olivier , D. Marc, A framework for attack patterns' discovery in honeynet data. Journal Digital Investigation: The International Journal of Digital Forensics & Incident Response, 2008, September 1, 5(8) : S128-S139.
[84] J. Lin, E. Keogh, S. Lonardi, B. Chiu, A symbolic representation of time series, with implications for streaming algorithms. In Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery, San Diego, CA, U.S.A, 2003, June 13; 2-11.
[85] A. Ghourabi, T. Abbes, A. Bouhoula, Data analyzer based on data mining for honeypot router. In Computer Systems and Applications (AICCSA), 2010 IEEE/ACS International Conference on, Hammamet, 2010, May 16-19; 1-6.
[86] M. Ester, H.P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining, 1996, August; 96(34) : 226-231.
[87] D. Brauckhoff, X. Dimitropoulos, A. Wagner, K. Salamatian, Anomaly extraction in backbone networks using association rules. IEEE/ACM Transactions on Networking (TON) 2012; 20(6) : 1788-1799.
[88] A. Kind, M. P. Stoecklin, X. Dimitropoulos, Histogram-based traffic anomaly detection. IEEE Transactions on Network and Service Management 2009; 6(2) : 110-121.
[89] A. Maedche, B. Motik, and L. Stojanovic, Managing multiple and distributed ontologies on the Semantic Web., Very Large Data Bases Journal, vol.12, no.4, pp.286-302, 2003.
[90] E. Prud'hommeaux, A. Seaborne, SPARQL Query Language for RDF, W3C Recommendation, 2008.
[91] Protégé, http://protege.stanford.edu, 2013.
[92] Pellet, http://clarkparsia.com/pellet, 2013.
[93] Jena, http://jena.apache.org/index.html, 2013.
[94] Forward chaining and backward chaining, HTTP://KNUT.HINKELMANN.CH/LECTURES/KE2011/KE-4_FC_VS_BC.PDF, 2013.
[95] C. J.C. Burges. (1998). A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2, 121–167.
[96] I. Ahmad, A. Abdullah, A. Alghamdi, M. Hussain. (2013). Optimized intrusion detection mechanism using soft computing techniques, Telecommunication Systems, 52(4), 2187-2195.
[97] J. Han, M. Kamber. (2006). Data Mining: Concepts and Techniques. Morgan Kaufmann, Second Edition (pp. 186-206).
[98] FluXOR and Alexa of SSFD public dataset. Retrieved December 30, 2014, from https://sites.google.com/site/huangpublication/datasets/-1-fast-flux-attaackdatasets.
[99] Y. Liao, V. R. Vemuri. (2002). Use of K-Nearest Neighbor Classifier for Intrusion Detection, Computers & Security, 21(5), 439-448.
[100] Malcom. Retrieved July 21, 2015, from https://github.com/tomchop/malcom.
[101] A. Boicea, F. Radulescu, L. I. Agapin, MongoDB vs Oracle -- Database Comparison. Emerging Intelligent Data and Web Technologies (EIDWT), 2012 Third International Conference on, Bucharest, 2012, September, 19-21; 330-335.
[102] M. Stonebraker, SQL databases v. NoSQL databases. Communications of the ACM 2010; 53(4) : 10-11.
[103] N. Leavitt, Will NoSQL databases live up to their promise? IEEE Computer Society 2010; 43(2) : 12-14.
[104] B. G. Tudorica, C. Bucur, A comparison between several NoSQL databases with comments and notes. Roedunet International Conference (RoEduNet) 2011 10th, Iasi, 2011, June 23-25; 1-5.
[105] F. Soldo, A. Metwally, Traffic anomaly detection based on the IP size distribution. INFOCOM, 2012 Proceedings IEEE, Orlando, FL, 2012, March 25-30; 2005-2013.
[106] S. Hansman, R. Hunt, A taxonomy of network and computer attacks. Computers & Security 2005; 24(1) : 31-43.
[107] MaxMind, https://github.com/maxmind. Accessed 27 June 2015.
[108] R. Agrawal, T. Imieliński, A. Swami, Mining association rules between sets of items in large databases. In ACM SIGMOD Record 1993; 22(2) : 207-216.
[109] C. Borgelt, Keeping things simple: Finding frequent item sets by recursive elimination. In Proceedings of the 1st international workshop on open source data mining: frequent pattern mining implementations, Chicago, Illinois, USA, 2005, August 21; 66-70.
[110] C. Borgelt, Efficient implementations of apriori and eclat. Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI), Melbourne, Florida , 2002, November 19; 1-13.
[111] UCI Machine Learning Repository, http://mlr.cs.umass.edu/ml/datasets.html . Accessed 27 June 2015.
[112] S. C. Geyik and B. K. Szymanski, Event Recognition in Sensor Networks by Means of Grammatical Inference, IEEE INFOCOM, pp.900-908, 2009.
[113] L. A. F. Martimiano and E. Moreira, The Evaluation Process of a Computer Security Incident Ontology, Proceedings of the Workshop on 2nd Workshop on Ontologies and their Applications co-located with the International Joint Conference IBERAMIA-SBIA-SBRN'06, 2006.
[114] M. Szymczyk, Detecting Botnets in Computer Networks Using Multi-Agent Technology, 2009 Fourth International Conference on Dependability of Computer Systems, pp.192-201, 2009.
[115] D. Vrandečić, Handbook on Ontologies. International Handbooks on Information Systems, pp. 293-313, 2009.
[116] S. Tartir, I. B. Arpinar, M. Moore, A. P. Sheth, and B. A. Meza, OntoQA: Metric-based ontology quality analysis, IEEE Computer Society, pp.45-53, 2005.
[117] ATLAS: Global fast flux report. Retrieved July 21, 2015, from https://atlas.arbor.net/summary/fastflux.
[118] DNSBL. Retrieved July 21, 2015, from http://www.dnsbl.info.
[119] DNSBH. Retrieved July 21, 2015, from http://www.malwaredomains.com/wordpress.
[120] Alexa. Retrieved July 21, 2015, from http://www.alexa.com/topsites.
[121] P. N. Tan, M. Steinbach and V. Kumar. (2006). Introduction to Data Mining. PEARSON Addison Wesley. New York.
[122] W. P. Zhu, M. X. Li, H. Chen, Using MongoDB to implement textbook management system instead of MySQL. IEEE 3rd International Conference on Communication Software and Networks (ICCSN), Xi'an, 2011, May 27-29; 303-305.
[123] A. Nayak, A. Poriya and D. Poojary, Type of NOSQL Databases and its Comparison with Relational Databases. International Journal of Applied Information Systems (IJAIS) 2013; 5(4) : 16-19.
[124] Y. Li, S. Manoharan, A performance comparison of SQL and NoSQL databases. IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), Victoria, BC, 2013, August 27-29; 15-19.
[125] VirusTotal, https://www.virustotal.com. Accessed 27 June 2015.
[126] IP2Location, http://www.ip2location.com/. Accessed 27 June 2015.
[127] I. Ray, K. Belyaev, M. Strizhov, D. Mulamba, M. Rajaram, Secure Logging as a Service—Delegating Log Management to the Cloud. IEEE Systems Journal 2013; 7(2): 323-334.
[128] A. Giridhar, P. R. Kumar, Toward a Theory of In-Network Computation in Wireless Sensor Networks. Communications Magazine, IEEE 2006; 44(4): 98-107.