簡易檢索 / 詳目顯示

研究生: 黃宗信
Ooi, Zong-Xin
論文名稱: 研究 Aurora-A 調控 Maf1 在細胞質中所扮演的角色
Studying the role of Aurora-A in Maf1 cytosolic function
指導教授: 洪良宜
Hung, Liang-Yi
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 56
中文關鍵詞: Aurora-AMaf1RNA Polymerase III細胞內定位粒線體
外文關鍵詞: Aurora-A, Maf1, RNA Polymerase III, subcellular localization, mitochondria
相關次數: 點閱:36下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • urora-A 是一個 serine/threonine 的蛋白激脢,會透過磷酸化下游目標蛋白來調
    控細胞週期的演進。Aurora-A 被許多研究發現在多種癌症中都有過度表現的情 形,其中包括肝癌。已知 Maf1 是一個 RNA Polymerase III 的 repressor,其活性 取決於磷酸化狀態與其在細胞內的定位。RNA Polymerase III 的產物在癌細胞中 有上調的現象並且也與細胞週期調控有關。實驗室先前的研究發現 Maf1 蛋白在 Aurora-A 過量表現的細胞有增多的跡象,且大部分會被留在細胞質內和增加穩 定性。本研究發現 Aurora-A 會與 Maf1 蛋白 C 端有交互作用,並且也找出 Maf1 潛在受 Aurora-A 磷酸化的位點,同時發現該位點與 Maf1 在細胞內定位與穩定 性有關。有趣的是,本研究發現該位點突變的 Maf1 蛋白雖然絕大部分入核,但 卻失去了抑制 RNA Polymerase III 活性的能力。相對於沒有突變的 Maf1,本研 究發現 Aurora-A 在增加位點突變 Maf1 蛋白的穩定性上能力較差;Aurora-A 夠 與位點突變 Maf1 仍具有交互作用的能力。因此,本研究認為 Aurora-A 可能會 同時以激酶依賴性以及非激脢依賴性的方式調控 Maf1 的細胞內定位與蛋白質 的穩定性。最後,本研究發現細胞質中的 Maf1 會跑到粒線體,而且這會受到 Aurora-A 所調控;因此推斷 Maf1 可能存在著一些細胞核以外的新穎性功能。總 而言之,本研究釐清了一小部分 Aurora-A 與 Maf1 的部分調控機制;然而,對 於 Maf1 在粒線體中的功能,以及 Aurora-A 對於 Maf1 的調控在粒線體中的角 色,則需要更進一步的探討。

    Aurora-A plays a vital role in regulating centrosome functions and promoting cell cycle progression. Overexpression of Aurora-A has been observed in a variety of cancers, including hepatocellular carcinoma (HCC). Maf1 is a kind of phosphoprotein which negatively regulates RNA Polymerase III activity. Both phosphorylation and subcellular localization dictate Maf1 activity. The transcripts of RNA polymerase III are upregulated in various cancers which are associated with the cell cycle progression of tumors. Our previous results showed that Aurora-A-overexpressing cells could increase Maf1 total protein level, cytosolic localization, and protein stability. Here, we demonstrated that Aurora-A can form a complex with Maf1 via interacting with its C-domain. A potential Aurora- A phosphorylation site of Maf1 was identified and mutated; we found that this mutant majorly resides in the nucleus but with a loss of function in suppressing RNA Polymerase III activity and promoting cancer cell proliferation. Moreover, this phosphorylation site was found to be crucial for maintaining Maf1 protein stability. Interestingly, compared with the wild-type Maf1, Aurora-A is still able to promote the protein stability of the phosphorylation-deficient Maf1 mutant with less ability. Co- immunoprecipitation assay also found that this mutant retains the interaction ability with Aurora-A. Those results suggested that Aurora-A might regulate Maf1 in both kinase-dependent and kinase- independent manners. Additionally, our recent discovery indicated that Maf1 also localizes in mitochondria fraction which could be enhanced by Aurora-A overexpression, thereby providing insight that cytosolic Maf1 could regulate mitochondria function in cancer progression. Taken altogether, we provided a connection between Aurora-A and Maf1 in regulating cancer cell progression.

    Chinese Abstract (中文摘要) I Abstract II Acknowledgements V Table of Contents VI Contents of Tables IX Contents of Figures X Abbreviation List XIII 1. Research Background 1 1-1 Cell cycle dysregulation and cancer 1 1-2 Cell cycle and RNA Polymerase III transcription 1 1-3 Aurora-A kinase 2 1-4 Maf1 protein 3 1-5 Mitochondria 3 1-6 Aim of study 4 2. Materials and Methods 6 2-1 Cell culture 6 2-2 Overexpression 6 2-3 Knockdown assay 7 2-4 Plasmid DNA extraction and purification 7 2-5 Western blot 9 2-6 Total RNA extraction 12 2-7 Reverse Transcription 12 2-8 Quantitative Real-time Polymerase Chain Reaction (RT-qPCR) 13 2-9 Co-immunoprecipitation 13 2-10 Cell Fractionation Assay 14 2-11 Cell Proliferation Analysis 14 2-12 Immunofluorescence 14 2-13 Extracellular Acidification Rate (ECAR) assay 15 2-14 Statistical analysis 15 3. Results 16 3-1 Characterization of T212A Maf1 mutant 16 3-2 Investigating T212 residue as a potential Aurora-A phosphorylation site on Maf1 protein 17 3-3 Maf1 might play an unknown Aurora-A mediated cytosolic function 19 3-4 Studying the unknown role of Maf1 in different subcellular localization 19 3-5 Aurora-A oncogenic function is partly dependent on high Maf1 expression level 20 3-6 Conclusion 21 4. Discussion 22 4-1 Investigating the significance of threonine-212 residue of Maf1 22 4-2 Investigating the unknown role of cytosolic Maf1 22 4-3 The kinase dependent and kinase independent regulation of Aurora-A on Maf1 23 4-4 The physiological function of mitochondrial Maf1 23 4-5 Maf1-mediated OCR and ECAR functional change 24 4-6 Future work 25 References 26 Tables 30 Figures 37 Appendices 55

    Arnold, J. J., Smidansky, E. D., Moustafa, I. M., and Cameron, C. E. Human mitochondrial RNA polymerase: structure-function, mechanism and inhibition. Biochimia et Biophysica Acta-Gene Regulatory Mechanisms 1819, 948-960, 2012.

    Becker, S., Groner, B., and Muller, C. W. Three-dimensional structure of the Stat3beta homodimer bound to DNA. Nature 394, 145-151, 1998.

    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248-254, 1976.

    Casari, I., Domenichini, A., Sestito, S., Capone, E., Sala, G., Rapposelli, S., and Falasca, M. Dual PDK1/Aurora Kinase A Inhibitors Reduce Pancreatic Cancer Cell Proliferation and Colony Formation. Cancers (Basel) 11, 1695, 2019.

    Chomczynski, P., and Sacchi, N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nature Protocols 1, 581-585, 2006.

    Chung, J. H., Zhang, Y., and Bunz, F. Checkpoint bypass and cell viability. Cell Cycle 9, 2102-2107, 2010.

    Crane, R., Gadea, B., Littlepage, L., Wu, H., and Ruderman, J. V. Aurora A, meiosis and mitosis. Biology of the Cell 96, 215-229, 2004.

    Delaunay, S., Pascual, G., Feng, B., Klann, K., Behm, M., Hotz-Wagenblatt, A., Richter, K., Zaoui, K., Herpel, E., Münch, C., Dietmann, S., Hess, J., Benitah, S. A., and Frye, M. Mitochondrial RNA modifications shape metabolic plasticity in metastasis. Nature 607, 593-603, 2022.

    Gaude, E., and Frezza, C. Tissue-specific and convergent metabolic transformation of cancer correlates with metastatic potential and patient survival. Nature Communications 7, 13041, 2016.

    Gritsko, T. M., Coppola, D., Paciga, J. E., Yang, L., Sun, M., Shelley, S. A., Fiorica, J. V., Nicosia, S. V., and Cheng, J. Q. Activation and overexpression of centrosome kinase BTAK/Aurora-A in human ovarian cancer. Clinical Cancer Research 9, 1420-1426, 2003.

    Hawkins, S. F. C., and Guest, P. C. Multiplex Analyses Using Real-Time Quantitative PCR. Methods in Molecular Biology 1546, 125-133, 2017.

    Herrera, M. C., Chymkowitch, P., Robertson, J. M., Eriksson, J., Boe, S. O., Alseth, I., and Enserink, J. M. Cdk1 gates cell cycle-dependent tRNA synthesis by regulating RNA polymerase III activity. Nucleic Acids Research 46, 11698-11711, 2018.

    Huang, S. Q., Sun, B., Xiong, Z. P., Shu, Y., Zhou, H. H., Zhang, W., Xiong, J., and Li, Q.
    The dysregulation of tRNAs and tRNA derivatives in cancer. Journal of Experimental and Clinical Cancer Research 37, 101, 2018.

    Jiang, S., Katayama, H., Wang, J., Li, S. A., Hong, Y., Radvanyi, L., Li, J. J., and Sen, S. Estrogen-induced aurora kinase-A (AURKA) gene expression is activated by GATA-3 in estrogen receptor-positive breast cancer cells. Hormones and Cancer 1, 11-20, 2010.

    Johnson, E. O., Chang, K. H., Ghosh, S., Venkatesh, C., Giger, K., Low, P. S., and Shah, K. LIMK2 is a crucial regulator and effector of Aurora-A-kinase-mediated malignancy. Journal of Cell Science 125, 1204-1216, 2012.

    Kamada, K., Yamada, Y., Hirao, T., Fujimoto, H., Takahama, Y., Ueno, M., Takayama, T., Naito, A., Hirao, S., and Nakajima, Y. Amplification/overexpression of Aurora-A in human gastric carcinoma: potential role in differentiated type gastric carcinogenesis. Oncology Reports 12, 593-599, 2004.

    Khutornenko, A. A., Roudko, V. V., Chernyak, B. V., Vartapetian, A. B., Chumakov, P. M., and Evstafieva, A. G. Pyrimidine biosynthesis links mitochondrial respiration to the p53 pathway. Proceedings of the National Academy of Sciences of the United States of America 107, 12828-12833, 2010.

    Kurien, B. T., and Scofield, R. H. Western blotting: an introduction. Methods in Molecular Biology 1312, 17-30, 2015.

    Lai, H. S. Investigating the regulatory mechanism and functional role of Aurora-A in Maf1 activity. Master thesis. Retrived from National Cheng Kung University of Department of Biotechnology and Bioindustry Sciences. 2020.

    Liberti, M. V., and Locasale, J. W. The Warburg Effect: How Does it Benefit Cancer Cells? Trends in Biochemical Sciences 41, 211-218, 2016.

    Lo Iacono, M., Monica, V., Saviozzi, S., Ceppi, P., Bracco, E., Papotti, M., and Scagliotti, G. V. Aurora Kinase A expression is associated with lung cancer histological-subtypes and with tumor de-differentiation. Journal of Translational Medicine 9, 100, 2011.

    Michels, A. A., Robitaille, A. M., Buczynski-Ruchonnet, D., Hodroj, W., Reina, J. H., Hall, M. N., and Hernandez, N. mTORC1 directly phosphorylates and regulates human MAF1. Molecular and Cellular Biology 30, 3749-3757, 2010.

    Nouri, M., Ratther, E., Stylianou, N., Nelson, C. C., Hollier, B. G., and Williams, E. D. Androgen-targeted therapy-induced epithelial mesenchymal plasticity and neuroendocrine transdifferentiation in prostate cancer: an opportunity for intervention. Frontiers in Oncology 4, 370, 2014.

    Peach, M., Marsh, N., Miskiewicz, E. I., and MacPhee, D. J. Solubilization of proteins: the importance of lysis buffer choice. Methods in Molecular Biology 1312, 49-60, 2015.

    Pihan, G. A., Purohit, A., Wallace, J., Malhotra, R., Liotta, L., and Doxsey, S. J. Centrosome defects can account for cellular and genetic changes that characterize prostate cancer progression. Cancer Research 61, 2212-2219, 2001.

    Porporato, P. E., Filigheddu, N., Pedro, J. M. B., Kroemer, G., and Galluzzi, L. Mitochondrial metabolism and cancer. Cell Research 28, 265-280, 2018.

    Pradhan, A., Hammerquist, A. M., Khanna, A., and Curran, S. P. The C-Box Region of MAF1 Regulates Transcriptional Activity and Protein Stability. Journal of Molecular Biology 429, 192-207, 2017.

    Reina, J. H., Azzouz, T. N., and Hernandez, N. Maf1, a new player in the regulation of human RNA polymerase III transcription. PLoS One 1, e134, 2006.

    Roberts, E. C., Shapiro, P. S., Nahreini, T. S., Pages, G., Pouyssegur, J., and Ahn, N. G. Distinct cell cycle timing requirements for extracellular signal-regulated kinase and phosphoinositide 3-kinase signaling pathways in somatic cell mitosis. Molecular and Cellular Biology 22, 7226-7241, 2002.

    Srinivasan, S., Guha, M., Dong, D. W., Whelan, K. A., Ruthel, G., Uchikado, Y., Natsugoe, S., Nakagawa, H., and Avadhani, N. G. Disruption of cytochrome c oxidase function induces the Warburg effect and metabolic reprogramming. Oncogene 35, 1585-1595, 2016.

    Stewart, Z. A., Westfall, M. D., and Pietenpol, J. A. Cell-cycle dysregulation and anticancer therapy. Trends in Pharmacological Sciences 24, 139-145, 2003.
    Sun, Y., Xu, H., Chen, X., Li, X., and Luo, B. Inhibition of mitochondrial respiration overcomes hepatocellular carcinoma chemoresistance. Biochemical and Biophysical Research Communications 508, 626-632, 2019.

    Tighe, A., Johnson, V. L., Albertella, M., and Taylor, S. S. Aneuploid colon cancer cells have a robust spindle checkpoint. European Molecular Biology Organization Report 2, 609-614, 2001.

    Tseng, P. L., Wu, W. H., Hu, T. H., Chen, C. W., Cheng, H. C., Li, C. F., Tsai, W. H., Tsai, H. J., Hsieh, M. C., Chuang, J. H., and Chang, W. T. Decreased succinate dehydrogenase B in human hepatocellular carcinoma accelerates tumor malignancy by inducing the Warburg effect. Scientific Reports 8, 3081, 2018.

    Vannini, A., Ringel, R., Kusser, A. G., Berninghausen, O., Kassavetis, G. A., and Cramer, P. Molecular basis of RNA polymerase III transcription repression by Maf1. Cell 143, 59-70, 2010.

    Vik, S. B. ATP Synthesis by Oxidative Phosphorylation. EcoSal Plus 2, 2007.

    Vinella, D., and D'Ari, R. Overview of controls in the Escherichia coli cell cycle. Bioessays 17, 527-536, 1995.

    Wang, J., Hu, T., Wang, Q., Chen, R., Xie, Y., Chang, H., and Cheng, J. Repression of the AURKA-CXCL5 axis induces autophagic cell death and promotes radiosensitivity in non-small-cell lung cancer. Cancer Letters 509, 89-104, 2021.

    Wang, J., Nikhil, K., Viccaro, K., Chang, L., Jacobsen, M., Sandusky, G., and Shah, K. The Aurora-A-Twist1 axis promotes highly aggressive phenotypes in pancreatic carcinoma. Journal of Cell Science 130, 1078-1093, 2017.

    Wang, R., Wang, J. H., Chu, X. Y., Geng, H. C., and Chen, L. B. Expression of STK15 mRNA in hepatocellular carcinoma and its prognostic significance. Clinical Biochemistry 42, 641-647, 2009.

    Wang, X. X., Liu, R., Jin, S. Q., Fan, F. Y., and Zhan, Q. M. Overexpression of Aurora-A kinase promotes tumor cell proliferation and inhibits apoptosis in esophageal squamous cell carcinoma cell line. Cell Research 16, 356-366, 2006.

    Wang, Y., Xia, Y., and Lu, Z. Metabolic features of cancer cells. Cancer Communications (Lond) 38, 65, 2018.

    Wang, Z., Fan, M., Candas, D., Zhang, T. Q., Qin, L., Eldridge, A., Wachsmann-Hogiu, S., Ahmed, K. M., Chromy, B. A., Nantajit, D., Duru, N., He, F., Chen, M., Finkel, T., Weinstein, L. S., and Li, J. J. Cyclin B1/Cdk1 coordinates mitochondrial respiration for cell-cycle G2/M progression. Developmental Cell 29, 217-232, 2014.

    Wei, Y., and Zheng, X. S. Maf1 regulation: a model of signal transduction inside the nucleus. Nucleus 1, 162-165, 2010.

    Wu, C., Lyu, J., Yang, E. J., Liu, Y., Zhang, B., and Shim, J. S. Targeting AURKA-CDC25C axis to induce synthetic lethality in ARID1A-deficient colorectal cancer cells. Nature Communications 9, 3212, 2018.

    Xu, H. T., Ma, L., Qi, F. J., Liu, Y., Yu, J. H., Dai, S. D., Zhu, J. J., and Wang, E. H. Expression of serine threonine kinase 15 is associated with poor differentiation in lung squamous cell carcinoma and adenocarcinoma. Pathology International 56, 375-380, 2006.

    Yeh, C. N., Yen, C. C., Chen, Y. Y., Cheng, C. T., Huang, S. C., Chang, T. W., Yao, F. Y., Lin, Y. C., Wen, Y. S., Chiang, K. C., Chen, J. S., Yeh, T. S., Tzeng, C. H., Chao, T. C., and Fletcher, J. A. Identification of aurora kinase A as an unfavorable prognostic factor and potential treatment target for metastatic gastrointestinal stromal tumors. Oncotarget 5, 4071-4086, 2014.

    Zheng, J. Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation. Oncology Letters 4, 1151-1157, 2012.

    下載圖示 校內:2024-08-31公開
    校外:2024-08-31公開
    QR CODE