簡易檢索 / 詳目顯示

研究生: 邱浩然
Chiu, Hao-Jan
論文名稱: 配置低鋼筋量之鋼筋混凝土梁受扭力、剪力與彎矩組合載重作用之研究
Investigations of Reinforced Concrete Beams with Lower Amounts of Reinforcement Subjected to Combined Torsion, Shear and Bending
指導教授: 方一匡
Fang, I-Kuang
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 111
中文關鍵詞: 鋼筋混凝土扭力組合載重剪力鬆弛變形能量密度
外文關鍵詞: shear relief, reinforced concrete, combined action, torsion, deformation energy density
相關次數: 點閱:85下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要在探討配置低鋼筋量之鋼筋混凝土梁分別受到純扭力,扭力與剪力以及扭力與彎矩組合載重作用下之行為,本研究另依據試驗結果探討ACI 318-05與AASHTO LRFD設計規範中與扭力相關設計規定之適用性。本研究根據34根全尺寸鋼筋混凝土梁試體之測試資料,其中包括16根梁試體受純扭力作用、11根梁試體受扭力與剪力組合載重作用、6根梁試體受扭力與彎矩組合載重作用以及1根梁試體受純彎矩作用以進行分析比較。主要研究變數為實心與空心斷面、斷面深寬比值、斷面之鋼筋比值、混凝土抗壓強度、Tu /Vu比值以及T/M比值。
    本研究結果顯示如下:
    1. 配置低鋼筋量的鋼筋混凝土梁試體之預留扭矩強度值主要受到斷面之抗扭箍筋與縱向鋼筋量比值的影響而並非其總抗扭鋼筋量來控制。
    2. ACI 318-05規範對構件受扭力與剪力組合載重作用下最大容許剪應力限制公式之保守性隨Tu /Vu比值增加而提高。
    3. 在相同鋼筋量與Tu /Vu比值條件下,空心斷面試體之實測開裂強度、極限強度值小於實心斷面試體。
    4. 試體因受到不同組合剪應力所產生之側向曲率會隨Tu /Vu比值減小而先增加後下降,且空心斷面試體之側向曲率大於實心斷面試體。
    5. 受扭力與彎矩組合載重作用試體表面混凝土平均主壓應變最大值發生位置會因T/M比值的增加,由試體頂面轉移至側面,進而改變其破壞模式。
    6. 試體斷面在受到扭力與彎矩組合作用力下所能提供之變形能量密度則會隨著扭力作用的增加而顯著減小,且試體之開裂扭矩勁度值則會因扭力的增加而減小。
    7. AASHTO LRFD設計規範對於構件受扭力與彎矩組合載重作用下的縱向鋼筋量限制公式,可以合理地預測試體之扭矩與彎矩強度互制關係的變化趨勢。

    The behaviors of reinforced concrete beams with lower amounts of torisonal reinforcement subjected to pure torsion, combined torsion and shear, and combined torsion and bending, respectively, are investigated. The associated specifications in the torsion design specified in the ACI 318-05 and AASHTO LRFD Codes are also discussed. Test results of thirty-four reinforced concrete beam specimens were used, including sixteen specimens subjected to pure torsion, eleven specimens subjected to combined torsion and shear, six specimens subjected to combined torsion and bending, and one specimen subjected to pure bending, respectively. The main parameters included the solid and hollow sections, volumetric ratio of torsional reinforcement, aspect ratios of the cross section, compressive strength of concrete, torsion to shear (Tu /Vu) ratios, and torsion to bending (T/M) ratios.
    The significant results are listed as follows:
    1. The adequacy of post-cracking reserve strength for specimens with relatively low amount of torsional reinforcement is primarily related to the ratio of transverse to longitudinal reinforcement factor in addition to the total amounts of torsional reinforcement.
    2. The allowable shear stress of ACI 318-05 code for members subjected to combined shear and torsion would become more conservative when the Tu /Vu ratios increase.
    3. Under the same condition of Tu/Vu ratios and the amount of reinforcement, the test cracking and ultimate strengths of specimens with hollow sections are lower than those with solid sections.
    4. The test lateral curvatures of the specimens increased, and then decreased with the decrease of Tu /Vu ratios. The hollow section specimens had larger lateral curvature than solid section specimens.
    5. The location of the maximum average principal compressive strain of concrete shifted from the top to back side of the specimens due to the increase of the T/M ratios, and the failure modes were also changed.
    6. The deformation energy densities of the specimens subjected to combined torsion and bending decreased with the increase of torsion. In addition, the ratio of the cracked torsional stiffness also decreased with the increase of torsion.
    7. The specification of the amounts of longitudinal reinforcements for the reinforced concrete beam subjected to combined torsion and bending in the AASHTO LRFD provisions can be used to rationally predict the strength interaction of the specimens.

    誌謝 I. 摘要 II. 目錄 VI. 表目錄 IX. 圖目錄 X. 符號說明 XIV. 第一章 緒 論 1-1 研究背景 1. 1-2 研究目的 3. 第二章 文獻回顧 2-1 理論與分析方法 5. 2-1-1 斜彎矩理論 5. 2-1-2 桁架類比模式 8. 2-1-3 斜彎矩理論與桁架類比模式之比較 13. 2-2 設計規範 15. 2-2-1美國混凝土學會之相關設計規定 15. 2-2-2美國公路橋樑設計規範之相關規定 22. 2-2-3美國混凝土學會與美國公路橋樑設計規範相關規定之比較 24. 第三章 配置低鋼筋量之鋼筋混凝土梁受純扭力作用下之行為研究 3-1 前言 25. 3-2 試體規劃與試驗方法 26. 3-2-1 試體設計 26. 3-2-2 試體材料與製作 31. 3-2-3 試驗裝置與試驗流程 31. 3-3 試驗結果與討論 33. 3-3-1 試體開裂之行為 33. 3-3-2 裂縫寬度之研究 37. 3-3-3 扭矩強度之研究 40. 3-3-4 扭矩延展性之研究 42. 3-3-5 ρt fyv /ρl fyl比值對試體開裂後預留強度之影響 46. 3-3-6 最低抗扭鋼筋量之探討 48. 3-4 小結 50. 第四章 配置低鋼筋量之鋼筋混凝土梁受扭力與剪力組合載重作用下之行為研究 4-1 前言 52. 4-2 試體規劃與試驗方法 52. 4-2-1 試體設計 52. 4-2-2 試體材料與製作 54. 4-2-3 試驗裝置與流程 55. 4-3 試驗結果與討論 57. 4-3-1 扭矩與剪力之極限強度互制關係 57. 4-3-2 構件斷面梁腹混凝土承壓應力之探討 61. 4-3-3 混凝土對扭力與剪力阻抗之貢獻 66. 4-3-4 側向曲率與剪力鬆弛現象 68. 4-4 小結 73. 第五章 配置低鋼筋量之鋼筋混凝土梁受扭力與彎矩組合載重作用下之行為研究 5-1 前言 75. 5-2 試體規劃與試驗方法 76. 5-2-1 試體設計 76. 5-2-2 試體材料與製作 78. 5-2-3 試驗裝置與流程 79. 5-3 試驗結果與討論 83. 5-3-1 試體開裂之行為 83. 5-3-2 試體開裂後之行為 86. 5-3-3 AASHTO LRFD相關規定之適用性 90. 5-3-4 T/M比值對破壞模式之影響 91. 5-3-5 T/M比值對試體勁度變化之影響 95. 5-3-6 T/M比值對試體變形能量密度之影響 98. 5-4 小結 100. 第六章 結論與建議 102. 6-1 結論 102. 6-2 建議 104. 參考文獻 106. 附錄1試體受扭力與彎矩組合載重作用之強度分析算例 A-1.

    1.Navier, C. L., “Resume des lecons donnees a l’ecole des ponts et chausses sur l’application de la mecanique al’establissement des constructions et des machines,” Premiere partie, “continant les lecons sur la resistance des materiaux et sur l’establissement des constructions en terre, en maconnerie et en charpente,” Firmin Didet, Paris (1826). (in French)
    2.Saint-Venant, B. de, “Memorie sur la torsion des prismes (lu a l’Academie le 13 juin 1853). Memoires Des Savants Etrangers, Memoires presentes par divers savants a l’Academie des Sciences, de l’Institute Imperial de France et imprime par son ordre, V. 14, Imprimerie Imperiale, Paris, pp. 233-560 (1856).
    3.Lessig, N. N., “Studies of Cases of Concrete Failure in Rectangular Reinforced Concrete Elements Subjected to Combined Flexure and Torsion,” Design of Reinforced Structures, State Publishing Offices of Literature on Structural Engineering, Architecture and Construction Materials (Moscow), pp. 229-271 (1961).
    4.Goode, C. D., and Helmy, M. A., “Ultimate Strength of Reinforced Concrete Beams in Combined Bending and Torsion,” Torsion of the Structural Concrete, SP-18, American Concrete Institute, Detroit, pp. 357-377 (1968).
    5.Collins, M. P.; Walsh, P. F.; Archer, F. E.; and Hall, A. A., “Ultimate Strength of Reinforced Concrete Beams Subjected to Combined Torsion and Bending,” Torsion of the Structural Concrete, SP-18, American Concrete Institute, Detroit, pp. 379-402 (1968).
    6.Ragan, B. V.; Staley, R. F.; and Hall, A. S., “Behavior of Concrete Beams in Torsion and Bending,” Journal of the Structural Division, ASCE, Vol. 103, No. 4, 1977, pp. 759-772 (1977).
    7.Elfgren, L.; Karlsson, I.; and Losberg, A., “Torsion-Bending-Shear Interaction for Concrete Beams,” Journal of the Structural Division, ASCE, Vol.100, No. 8, pp.1657-1676 (1974).
    8.Ewida, A. A., and McMullen, A. E., “Torsion-Shear-Flexural Interaction in Reinforced Concrete Members,” Magazine of Concrete Research, Vol. 33, No.115, pp.113-122 (1981).
    9.Ewida, A. A., and McMullen, A. E., “Concrete Members under Combined Torsion and Shear,” Journal of the Structural Division, ASCE, Vol. 108, No. 4, pp. 911-928 (1982).
    10.ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary (ACI 318R-05),” American Concrete Institute, Michigan, 430 pp (2005).
    11.American Association of State Highway and Transportation Official, “AASHTO-LRFD Bridge Design Specification and Commentary,” First Edition, 1098 pp (1994).
    12.Leu, L. J., and Lee, Y. S., “Torsion Design Charts for Reinforced Concrete Rectangular Members,” Journal of the Structural Engineering, ASCE, Vol. 126, No. 2, pp. 210-218 (2000).
    13.Hsu, T. T. C., and Mo, Y. L., “Softening of Concrete in Torsional Members - Theory and Tests,” ACI Journal, Proceedings Vol. 82, No. 3, pp. 290-303 (1985).
    14.Hsu, T. T. C., “ACI Shear and Torsion Provisions for Prestressed Hollow Girders,” ACI Structural Journal, Vol. 94, No. 6, pp.787-799 (1997).
    15.Ali, M. A., and White, R. N., “Toward a Rational Approach for Design of Minimum Torsion Reinforcement,” ACI Structural Journal, Vol. 96, No. pp. 40-45 (1999).
    16.Koutchoukali, N., and Belarbi, A., “Torsion of High-Strength Reinforcement Concrete Beams and Minimum Reinforcement Requirement,” ACI Structural Journal, Vol. 98, No. 4, pp. 462-469 (2001).
    17.ACI Standard 318-71, Building Code Requirements for Reinforced Concrete (ACI 318-71), American Concrete Institute, Detroit, 78 pp (1971).
    18.Goode, C. D., and M. A. Helmy, “Ultimate Strength of Reinforced Concrete Beams in Bending and Torsion,” Torsion of Structural Concrete, SP-18, American Concrete Institute, Detroit, pp.357-377 (1968).
    19.Yudin, V. K., “Determination of the Load Carrying Capacity of Rectangular Reinforced Elements Subjected to Combined Torsion and Bending,” Beton I Zhelezobeton(Concrete and Reinforced Concrete), Moscow, No. 6, June 1962, pp. 265-269 (in Russian). Translated by Portland Cement Association, Foreign Literature Study No. 377 (1968).
    20.Ritter, W., “Die Bauweise Hennebique,” Schweizerishe Bauzeitung, Zurich, February (1899).
    21.Morsch, E., “Der Eisenbetonbau, seine Anwendung und Theorie,” 1st ed., Wayss and Freytag, A. G., Im Selbstverlag der Firma, Neustadt a. d. Haardt, May. 118 pp (1902).
    22.Rausch, E., “Design of Reinforced Concrete in Torsion,” (Berechnung des Eisenbetons gegen Verdrehung), Ph.D. thesis, Technische Hochschule, Berlin, 53 pp (1929).
    23.Mitchell, D., and Collins, M. P., “Diagonal Compression Field Theory - A Rational Model for Structural Concrete in Pure Torsion,” ACI Journal, Proceedings Vol. 71, No. 8, pp. 396-408 (1974).
    24.Vecchio, F. J., and Collins, M. P., “The Modified Compression Field Theory for Concrete Elements Subjected to shear,”Journal of American Concrete Institute, Vol. 83, No. 2, pp.219-231 (1986).
    25.Rahal, K. N., and Collins, M. P., “Effect of Thickness of Cover on Shear-Torsion Interaction- An Experimental Investigation,” ACI Structural Journal, Vol. 92, No. 3, pp.334-342 (1995).
    26.Bredt, R., “Kritische Bemerkunger zur Drehungselastizitat,”Zeitschrift des Vereines Deutscher Ingenieure, Band 40, No. 28, pp.785-790; No.29, pp.813-817 (1896).
    27.Fang, I. K., and Shiau, J. K., “Torsional Behavior of Normal and High-Strength Concrete Beams,”ACI Structural Journal, Vol. 101, No. 3, pp. 304-313 (2004).
    28.Vecchio, F. J., and Collins, M. P.,“Stress-Strain Characteristic of Reinforced Concrete in Pure Shear,”IABSE Colloquium, Advanced Mechanics of Reinforced Concrete, Delft, Final Report, International Association of Bridge and Structural Engineering, Zurich, Switzerland, pp. 221-225 (1981).
    29.Belarbi, A., and Hsu, T. T. C., “Constitutive Laws of Concrete in Tension and Reinforcing Bars Stiffened By Concrete,” ACI Structural Journal, Vol. 91, No. 4, pp. 465-474 (1994).
    30.ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-95) and Commentary (ACI 318R-95),” American Concrete Institute, Michigan, 369 pp (1995).
    31.ACI Committee 438, “Tentative Recommendations for the Design of Reinforced Concrete Members to Resist Torsion,” ACI Journal, Proceedings Vol. 66, No. 1, pp. 1-8 (1969).
    32.Hsu, T. T. C., and Kemp, E. L., “Background and Practical Application of Tentative Design Criteria for Torsion,” ACI Journal, Proceedings Vol. 66, No. 1, pp. 12-23 (1969).
    33.ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-99) and Commentary (ACI 318R-99),” American Concrete Institute, Michigan, 391 pp (1999).
    34.ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-02) and Commentary (ACI 318R-02),” American Concrete Institute, Michigan, 443 pp (2002).
    35.Roller, J. J., and Russell, H. G., “Shear Strength of High-Strength Concrete Beams with Web Reinforcement,” ACI Structural Journal, Vol. 87, No. 2, pp. 191-198 (1990).
    36.Zia, Paul, and Hsu, T. T. C., “Design for Torsion and Shear in Prestressed Concrete Flexural Members,” PCI Journal, Vol. 49, No. 3, pp. 34-42, (2004).
    37.ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-89) and Commentary (ACI 318R-89),” American Concrete Institute, Michigan, 353 pp (1989).
    38.Zia, Paul, and McGee, W. Denis, “Torsion Design of Prestressed Concrete,” PCI Journal, Vol. 19, No. 2, pp. 46-65 (1974).
    39.Myers, G., “Minimum Torsional Web Reinforcement for Prestresed Concrete,” M.S. Thesis under the supervision of Thomas, T.C. Hsu, Department of Civil Engineering, University of Miami, Coral Gables, FL (1978).
    40.Hsu, T. T. C., “Torsion of Structural Concrete—Behavior of Reinforced Concrete Rectangular Members,” Torsion of Structural Concrete, SP-18. American Concrete Institute, Detroit, pp. 261-306 (1968).
    41.Yoon, Y. S.; Cook, W. D.; and Mitchell, D., “Minimum Shear Reinforcement in Normal, Medium, and High-Strength Concrete Beams,” ACI Structural Journal, Vol. 93, No. 5, pp. 576-584 (1996).
    42.Ozcebe, G.; Ersoy, U.; and Tankut, T., “Evaluation of Minimum Shear Reinforcement Requirements for Higher Strength Concrete,” ACI Structural Journal, Vol. 96, No. 3, pp. 361-368 (1999).
    43.Hsu, T. T. C., Unified Theory of Reinforced Concrete, CRC Press, Boca Raton, FL. (1993).
    44.Park, S. K.; Ko, W. J.; and Kim, H. Y., “Estimation of Torsional Crack Width for Concrete Structural Members,” Magazine of concrete Research, Vol. 53, No. 5, pp. 337-45 (2001).
    45.Eurocode 2. Design of Concrete Structural, Part 1, General Rules and Rules for Building. European Committee for standardisation, ENV 1992-1-1.
    46.Rahal, K. N., “Torsional strength of reinforced concrete beams,” Canadian Journal of Civil Engineering, Vol. 27, No. 3, pp. 445–53 (2000).
    47.朱信澈,「鋼筋混凝土梁在扭矩與剪力組合載重作用下之行為研究」,碩士論文,國立成功大學土木工程學系,台南(2002)。(方一匡教授指導)
    48.曾品彰,「高性能鋼筋混凝土梁在扭矩與剪力組合載重作用下之承力行為研究」,碩士論文,國立成功大學土木工程學系,台南(2003)。(方一匡教授指導)
    49.Rahal, K. N., and Collins, M. P., “Experimental Evaluation of ACI and AASHTO-LRFD Design Provisions for Combined Shear and Torsion,” ACI Structural Journal, Vol. 100, No. 3, pp. 277-282 (2003).
    50.Hsu, T. T. C., Torsion of Reinforced Concrete, Van Nostrand Reinhold Company Inc., pp. 119-169 (1984).
    51.Rahal, K. N., “Longitudinal Steel Stress in Beams Due to Shear and Torsion in AASHTO-LRFD Specifications,” ACI Structural Journal, Vol. 102, No. 5, pp. 689-698 (2005).
    52.張建偉,「配置不對稱撓曲鋼筋之梁在彎矩與扭矩組合載重作用下的承力行為研究」,碩士論文,國立成功大學土木工程學系,台南(2003)。(方一匡教授指導)
    53.Collins, M. P., and Mitchell, D., “Shear and Torsion Design of Prestressed and Non-Prestressed Concrete Beams,” PCI Journal, Vol. 25, No. 5, pp. 32-100 (1980).
    54.Onsongo, W. M., “The Diagonal Compression Field Theory for Reinforced Concrete Beams Subjected to Combined Torsion, Flexure, and Axial Load,” PhD thesis, Department of Civil Engineering, University of Toronto, Toronto, Ontario, Canada, 246 pp (1978).

    下載圖示 校內:2012-08-29公開
    校外:2014-08-29公開
    QR CODE