| 研究生: |
黃萱琪 Huang, Hsuan-Chi |
|---|---|
| 論文名稱: |
都會區機車行車型態與空氣污染物排放特性關聯性研究 Characteristics of Motorcycle Driving Cycle and Air Pollutant Emissions in Urban Area |
| 指導教授: |
蔡俊鴻
Tsai, Jiun-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 179 |
| 中文關鍵詞: | 台北市區機車行車型態 、固定路線追車法 、噴射引擎機車 、動力計 、空氣污染物 |
| 外文關鍵詞: | Fuel-injection motorcycle, TPE Type driving cycle, Dynamometer, Air pollutant, Emission factor |
| 相關次數: | 點閱:101 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究於台北市區道路進行機車行車型態調查,再於車體動力計利用所建立台北市區機車行車型態與標準測試型態進行機車尾氣污染物排放檢測,比較機車於不同行車型態測試排放空氣污染物(CO、THC及NOx)之差異性。
研究應用固定路線追車法於台北市區五條主要道路進行實地追車調查,再利用隨機區段組合法建立台北市區機車行車型態(TPE Type)。研究結果顯示,TPE Type行車型態之主要特徵為:平均旅行速度19.5 km/hr,平均行駛速度29.2 km/hr,怠速時間比33.2 %,定速時間比11.8 %,加速時間比26.7 %,減速時間比28.3 %。比較TPE Type行車型態與國內現行法規機車標準行車型態(ECE-15)及未來法規擬推行機車行車型態(WMTC)之各項代表性參數,TPE Type與ECE-15在平均旅行速度及怠速時間比較相近,TPE Type與WMTC在平均行駛速度及區段行駛時間較相近。
以TPE Type、KH type 32、ECE-15行車型態及WMTC行車型態於動力計進行空氣污染物排放測試結果顯示,四行程機車行駛ECE型態所致CO、THC與NOx排放係數為2.85、0.50與0.35 (g/km),行駛WMTC型態所致CO、THC與NOx排放係數為3.40、0.47與0.37 (g/km),行駛TPE Type型態所致CO、THC與NOx排放係數為4.49、0.67與0.44 (g/km),行駛KH type 32型態所致CO、THC與NOx排放係數為3.03、0.47與0.47 (g/km)。研究結果顯示,以TPE Type測試所致法定污染物排放係數皆高於以ECE及WMTC型態測試所得值。比較四種不同行車型態測試排放係數高低順序顯示:CO排放係數依序為 TPE Type > WMTC > KH type 32 > ECE,差異範圍58 %;THC排放係數依序為TPE Type > ECE > KH type 32 > WMTC,差異範圍43 %;NOx排放係數依序為KH type 32 > TPE Type > WMTC > ECE,差異範圍34 %。
解析不同行車型態之油耗數據顯示,TPE Type (28.7 mL/km) 與 ECE (28.8 mL/km) 近似,高於WMTC (26.0 mL/km) 與KH type 32 (24.0 mL/km);油耗趨勢與各類行車型態排放係數趨勢相近,ECE則屬例外,應與其定速時間較長,引擎可在較適當條件操作,燃燒效率較佳,故CO排放係數較低。
This study had been conducted to develop a localized driving cycle for motorcycle in Taipei city and test the emissions with different driving cycles on a chassis dynamometer. The localized driving cycle had been developed by optimizing speed-time data from real world driving routes on 5 main streets in Taipei downtown area. The representative driving cycle (TPE Type) was developed by integrating 10 parameters with least variation from all test runs. The characteristics of TPE Type driving cycle for motorcycle are low travel speed, frequent acceleration-deceleration change, and less duration of cruising. Typical parameters of TPE Type driving cycle include average speed of entire driving cycle (19.5 km/hr), average running speed (29.2 km/hr), average of all acceleration phases (0.8 m/s2), average of all deceleration phases (0.7 m/s2), duration of driving period (168.9 s), number of acceleration-deceleration change within one driving period (14.6), and time-shared among modes of idling (33.2%), cruising (11.8%), acceleration (26.7%), and deceleration (28.3%).
Emission factors of fuel-injection motorcycle had been derived by conducting the dynamometer test with two localized driving cycles (Taipei City cycle and Kaohsiung City cycle) and two international cycles ( ECE and WMTC). The emission factors of CO for ECE / WMTC / TPE / KH cycle are 2.85 / 3.40 / 4.49 / 3.03 g/km, respectively. The factors (g/km) are 0.50 / 0.47 / 0.67 / 0.47 for THC, and 0.35 / 0.37 / 0.44 / 0.47 for NOx, respectively. The highest emission factors of CO, THC, NOx were found in TPE Type driving cycle among these four patterns.
Results of fuel consumption showed a higher value of TPE Type ( 28.7 mL/km) and ECE ( 28.8 mL/km) which were followed by WMTC ( 26.0 mL/km) and KH Type ( 24.0 mL/km). The data indicate that the route of motorcycle in downtown Taipei city is less fuel economically.
Results of this study also indicate that a representative localized driving pattern for motorcycle is very important for accurate estimation of air pollutant emission inventory and emission compliance management. The differences among various driving cycles are 58% for CO, 43% for THC, and 34% for NOx, respectively.
英文部分
Bailey, J. C., Schmidl, B., Williams, M. L., 1990. Speciated Hydrocarbon Emissions from Vehicles Operated over the Normal Speed Range on the Road. Atmospheric Environment 24(1), 43-52.
Crauser, J. P., Mauring, M., Joumard, R., 1989. Representative Kinematic Sequences for the Road traffic in France. SAE paper 890875.
Chan, C.C., Nien, C.K., Tasi, C.Y., Her, G.R., 1995. Comparison of tail pipe emissions from motorcycle and passenger cars. Journal of Air & Waste Management Association 45(2), 116-124.
Colyar, J. D., 2001. An Empirical Study of the Relationships between Macroscopic Traffic Parameters and Vehicle Emissions. North Carolina State University.
Emission Test Cycles, Ecopoint Inc. http://www.dieselnet.com/standards/cycles/
Frey, H.C., Rouphail, N. M., Unal, A., Colyar, J. D., 2001. Measurement of On-Road Tailpipe CO, NO, and HC Emissions Using a Portable Instrument. Preparation for submittal to Air & Waste Management Association Journal.
Hung, W.T., Tam, K.M., Lee, C.P., Chan, L.Y., Cheung, C.S., 2005. Comparison of driving characteristics in cities of Pearl River Delta, China. Atmospheric Environment 39(4), 615-625.
Jia L.W., Shen M.Q., Wang J., Lin M.Q., 2005. Influence of ethanol–gasoline blended fuel on emission characteristics from a four-stroke motorcycle engine. Journal of Hazardous Materials 123(1-3), 29-34.
Kent, J. H., Allen, G. H., Rule, G., 1978. A Driving Cycle for Sydney. Transportation Research 12(3), 147-152.
Kent, J. H., Mudford, N. R., 1979. Motor Vehicle Emission and Fuel Consumption Modeling. Transportation Research 13(6), 395-406.
Kenworthy, J. R., Newman, P. W. G., 1982. A Driving Cycle for Perth : Methodology and Preliminary Results. SAE-A/ARRB Conf. Paper 82149.
Kamble, S. H., Mathew, T. V., Sharma, G.K., 2009. Development of real-world driving cycle: Case study of Pune, India. Transportation Research Part D: Transport and Environment 14(2), 132-140.
Pierson, W. R., Gertler, A. W., Bradow, R. L., 1990. Comparison of the SCAQS Tunnel Study with Other On-Road Vehicle Emission Data. Journal of the Air & Waste Management Association 40(11), 1495-1504.
Sigsby, J. E., Tejada, S., Ray, W., 1987. Volatile Oragnic Compound Emissions from 46 In-Use Passengers Cars. Environmental Science & Technology 21(5), 466-475.
Schifter, 2000. Estimation of Motor Vehicle Toxic Emissions in the Metropolitan Area of Mexico City. Environmental Science & Technology 34(17), 3606-3610.
Saleh, W., Kumar, R., Kirby, H., Kumar, P., 2009. Real world driving cycle for motorcycles in Edinburgh. Transportation Research Part D: Transport and Environment 14(5), 326-333.
Tong, H. Y., Hung, W. T., Cheung, C. S., 1999. Development of a driving cycle for Hong Kong. Atmospheric Environment 33(15), 2323-2335.
Tzirakis, E., Pitsas, K., Zannikos, F., Stournas, S., 2006. Vehicle Emissions and Driving Cycles: Comparison of The Athens Driving Cycle (Adc) with ECE-15 and European Driving Cycle (Edc). Global NEST Journal 8(3), 282-290.
Tamsanya, S., Chungpaibulpatana, S., Limmeechokchai, B., 2009. Development of A Driving Cycle for The Measurement of Fuel Consumption and Exhaust Emissions of Automobiles in Bangkok During Peak Periods. International Journal of Automotive Technology 10(2), 251-264.
Tong, H.Y., H.D. Tung, W.T., Hung, H.V., NguyenTong, H.Y., 2011. Development of driving cycles for motorcycles and light-duty vehicles in Vietnam. Atmospheric Environment, doi:10.1016/j.atmosenv. 2011.06.023.
UN, 2005. Report on the Development of A Global Technical Regulation Concerning Worldwide Harmonized Motorcycle Emissions Certification Procedure (WMTC). TRANS/WP.29/2005/55.
Watson, H. C., Milkins. E. E., Preston, M. O., Chittleboroungh, C., Alimoradian, B., 1983. Perdicting Fuel Consumption and Emission Transferring Chassis Dynamometer Results to Real Driving Condition. SAE paper 830435.
Wang, C. S., Huang, Q. D., Ling, R. S., Zhang, Y. T., 1985. Measurement of Passenger Car Operation in Beijing Pertinent to Exhaust and Fuel Economy. SAE paper 852242.
Wang, Q., Huo, H., He, K., Yao, Z., Zhang, Q., 2008. Characterization of vehicle driving patterns and development of driving cycles in Chinese cities. Transportation Research Part D: Transport and Environment 13(5), 289–297.
Yoshizumi, K., Nakamura, K., Ionue, K., Ishiguro, T., 1980. Automotive Exhaust Emissions in an Urban Area. SAE paper 800326.
中文部分
王文正,2002,以實際道路行車型態作動力計測試之機車排放係數研究,國立中山大學環境工程研究所碩士論文。
李秉壬,1989,市區小客車行車型態之研究,國立成功大學交通管理(科學)研究所碩士論文。
林志峰,2001,屏東縣機車行車型態與排放係數之調查研究,國立中山大學環境工程研究所碩士論文。
何文淵,1999,汽油車引擎廢氣揮發性有機物成份及光化反應潛勢,國立成功大學環境工程研究所碩士論文。
姚永真,2010,汽油成份於四行程機車引擎氣態污染物排放特徵及模式研究,國立成功大學環境工程研究所博士論文。
翁閎政,1998,機車排氣之揮發性有機物特徵及光化反應性研究,國立成功大學環境工程研究所碩士論文。
彭柏鈞,2003,都會區機車行車型態與空氣污染物排放特性之調查,國立成功大學環境工程研究所碩士論文。
張安伶,2006,油品成份對機車引擎排放氣態污染物影響研究,國立成功大學環境工程研究所碩士論文。
劉育穎,2001,機車排放醛酮類化合物特徵與光化反應性研究,國立成功大學環境工程研究所碩士論文。
蔡承祐,2010,應用車載排放量測系統於汽油小客車行駛實際道路空氣污染物排放之研究,國立台灣大學環境工程研究所碩士論文。
鄧金地,1996,台北都會區小型汽車與機車行車型態之研究,國立交通大學交通運輸研究所碩士論文。
賴彥銘,2010,台中都會區機車行車型態與廢氣特徵研究,輔英科技大學環境工程與科學系碩士班碩士論文。
行政院環境保護署,2001,都會區機車行車型態與排放係數研究, EPA-90-FA13-03-B034。
行政院環境保護署,2004,台灣地區汽車污染現況調查及代表性行車型態相關性測試,EPA-92-FA13-03-A113。
行政院環境保護署, 2009,空氣污染物排放清冊資料更新管理及排放量空間分佈查詢建置,EPA-97-FA11-03-A176。
高雄市環保局委託春迪企業,1997,高雄都會區行車型態及平均排放係數計算程式建立與更新計畫。
郭津、張冠偉、劉欣、趙杰、凌雷、杜青,2005,摩托車排放性能的WMTC測試循環,小型內燃機與摩托車34(5),12-15。
逄士豪、郭博堯,2008,可攜式車載排放量測系統於美國移動污染源檢測之發展與應用,化工技術。
行政院環境保護署,2000,「汽車排放空氣污染儀器檢驗人員汽車惰轉狀態及負載檢驗訓練教材(第三期)」。
黃靖雄,2002年再版,現代低公害省油汽車排氣污染控制技術及安裝置, 全華科技圖書出版。
蕭瑞聖,2008,機車原理與機構(增訂本), ISBN 957-18-0114-3,財團法人徐氏文教基金會。
行政院環保署移動污染源管制網,http://mobile.epa.gov.tw/index.aspx
交通部統計處, http://www.motc.gov.tw/mocwebGIP/wSite/mp?mp=1
台北市交通管制工程處,http://www.bote.taipei.gov.tw/MP_117031.html