研究生: |
徐志豪 Hsu, Chih-Hao |
---|---|
論文名稱: |
應用不同類神經網路為基礎之基因演算法求解流程式生產排程問題 Solving a Flow Shop Scheduling Problem Using Neural Networks based Genetic Algorithm |
指導教授: |
王泰裕
Wang, Tai-Yue |
學位類別: |
碩士 Master |
系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 類神經網路 、深度學習 、生產排程 、基因演算法 |
外文關鍵詞: | neural networks, deep learning, flow shop scheduling, genetic algorithm |
相關次數: | 點閱:100 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於製造業而言,生產排程是相當重要的環節,其主要探討內容為在有限的資源中,藉由工作順序以及機台分配,降低生產成本提供企業的經濟效益以及競爭力。然而,為因應大環境變動,排程問題也逐漸趨於複雜,機台、工作量也愈來愈龐大,良好的生產排程計畫的制定,可以避免時間、成本的浪費,達到利潤的最大化,生產排程本身是一個複雜的問題,很難找到最佳排程方法且求解費時。因此,本研究先以不同的類神經網路方法進行排程,解決流程式生產排程問題,以最小化總完工時間為目標,借助其學習能力進行排程,並將其與基因演算法做結合,使其獲得更好的結果。首先蒐集排程問題之標竿問題及最佳解,以供產生進行學習之樣本,依據不同的類神經網路方法,將排程問題之特徵擷取出來,再運用獲得之特徵進行訓練,在面對新的排程問題時,使用訓練好的類神經網路方法先獲得起始解再將其放入基因演算法中將工作進行排序。結果顯示在單純使用類神經網路的方法中,使用卷積神經網路可以獲得較佳的結果,而利用卷積神經網路為基礎之基因演算法跟所有方法進行比較時,擁有最好的結果。
Scheduling is the most crucial part of production management. It is the process of arranging, controlling, and optimizing works in a production process. Enterprises can reduce cost and enhance competitiveness with scheduling important resources. Flow shop scheduling is a commom system for modern factories. Nowadays, the process technology evolves and manufacturing environments become more complicated. As the scale of manufacturing systems grows, namely more jobs and machines are involved, those problems become more difficult and time-consuming to find the best solution. In this study, we start by solving a flow shop scheduling problem with neural networks models. The goal is to find a sequence of different jobs to minimize makespan. We propose three models to solve flow shop scheduling by deep neural networks (DNN), support vector regression (SVR), and convolutional neural network (CNN), respectively. Then we combine neural networks models with the genetic algorithm (GA) to obtain neural networks based genetic algorithm. First, we extract features from benchmark for flow shop scheduling problems to train neural networks models. Next, we solve the new flow shop scheduling problems with trained neural networks models. Then the sequence obtained from the neural network models is used to generate the initial population for the genetic algorithm. The makespan of the sequence obtained by above approaches compare with each other, back propagation neural network (BPN), GA and dispatching rules. It was found that CNN approach performs better than other neural networks models and CNN based genetic algorithm get the best performance.
Arizono, I., Yamamoto, A., & Ohta, H. (1992). Scheduling for minimizing total actual flow time by neural networks. The International Journal of Production Research, 30(3), 503-511.
Azadeh, A., Maleki-Shoja, B., Sheikhalishahi, M., Esmaili, A., Ziaeifar, A., & Moradi, B. (2015). A simulation optimization approach for flow-shop scheduling problem: a canned fruit industry. The International Journal of Advanced Manufacturing Technology, 77(1-4), 751-761.
Campbell, H. G., Dudek, R. A., & Smith, M. L. (1970). A heuristic algorithm for the n job, m machine sequencing problem. Management science, 16(10), B-630.
Chen, C. L., Vempati, V. S., & Aljaber, N. (1995). An application of genetic algorithms for flow shop problems. European Journal of Operational Research, 80(2), 389-396.
Cho, H., & Wysk, R. A. (1993). A robust adaptive scheduler for an intelligent workstation controller. The International Journal of Production Research, 31(4), 771-789.
Chryssolouris, G., Lee, M., & Domroese, M. (1991). The use of neural networks in determining operational policies for manufacturing systems. Journal of Manufacturing Systems, 10(2), 166-175.
Framinan, J. M., Gupta, J. N., & Leisten, R. (2004). A review and classification of heuristics for permutation flow-shop scheduling with makespan objective. Journal of the Operational Research Society, 55(12), 1243-1255.
Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and jobshop scheduling. Mathematics of Operations Research, 1(2), 117-129.
Haq, A. N., & Ramanan, T. R. (2006). A bicriterian flow shop scheduling using artificial neural network. The International Journal of Advanced Manufacturing Technology, 30(11-12), 1132.
Haq, A. N., Ramanan, T. R., Shashikant, K. S., & Sridharan, R. (2010). A hybrid neural network–genetic algorithm approach for permutation flow shop scheduling. International Journal of Production Research, 48(14), 4217-4231.
Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural computation, 18(7), 1527-1554.
Holland, J. H. (1992). Genetic algorithms. Scientific american, 267(1), 66-73.
Hopfield, J. J., & Tank, D. W. (1985). “Neural” computation of decisions in optimization problems. Biological cybernetics, 52(3), 141-152.
Ignall, E., & Schrage, L. (1965). Application of the branch and bound technique to some flow-shop scheduling problems. Operations Research, 13(3), 400-412.
Johnson, S. M. (1954). Optimal two‐and three‐stage production schedules with setup times included. Naval research logistics quarterly, 1(1), 61-68.
Kumar, S. (2004). Neural networks : a classroom approach. Tata McGraw-Hill, New Delhi.
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
Lee, I., & Shaw, M. J. (2000). A neural-net approach to real time flow-shop sequencing. Computers & Industrial Engineering, 38(1), 125-147.
Murata, T., Ishibuchi, H., & Tanaka, H. (1996). Genetic algorithms for flowshop scheduling problems. Computers & Industrial Engineering, 30(4), 1061-1071.
Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on machine learning (ICML-10) (pp. 807-814).
Nawaz, M., Enscore Jr, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega, 11(1), 91-95.
Ogbu, F. A., & Smith, D. K. (1991). Simulated annealing for the permutation flowshop problem. Omega, 19(1), 64-67.
Osman, I. H., & Potts, C. N. (1989). Simulated annealing for permutation flow-shop scheduling. Omega, 17(6), 551-557.
Patel, H., Thakkar, A., Pandya, M. and Makwana, K. (2017). Neural network with deep learning architectures. Journal of Information and Optimization Sciences, 39, 31-38.
Philipoom, P. R., Rees, L. P., & Wiegmann, L. (1994). Using Neural Networks to Determine Internally‐Set Due‐Date Assignments for Shop Scheduling. Decision Sciences, 25(5‐6), 825-851.
Pierreval, H. (1993). Neural network to select dynamic scheduling heuristics. Journal of decision systems, 2(2), 173-190.
Pinedo, M. L. (2012). Scheduling: theory, algorithms, and systems. Springer Science & Business Media.
Rabelo, L. C., Alptekin, S., & Kiran, A. S. (1990). Synergy of artificial neural networks and knowledge-based expert systems for intelligent FMS scheduling. In 1990 IJCNN International Joint Conference on Neural Networks (pp. 359-366). San Diego, CA: IEEE.
Ramanan, T. R., Sridharan, R., Shashikant, K. S., & Haq, A. N. (2011). An artificial neural network based heuristic for flow shop scheduling problems. Journal of Intelligent Manufacturing, 22(2), 279-288.
Reeves, C. R. (1995). A genetic algorithm for flowshop sequencing. Computers & Operations Research, 22(1), 5-13.
Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65(6), 386.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1988). Learning representations by back-propagating errors. Cognitive modeling, 5(3), 1.
Sabuncuoglu, I., & Hommertzheim, D. L. (1992). Dynamic dispatching algorithm for scheduling machines and automated guided vehicles in a flexible manufacturing system. The International Journal of Production Research, 30(5), 1059-1079.
Salamon, J., & Bello, J. P. (2017). Deep convolutional neural networks and data augmentation for environmental sound classification. IEEE Signal Processing Letters, 24(3), 279-283.
Simon, F. Y. P. (1988). Stochastic neural networks for solving job-shop scheduling. I. Problem representation. In IEEE 1988 International Conference on Neural Networks (pp. 275-282). San Diego, CA: IEEE.
Simon, F. Y. P. (1988, July). Stochastic neural networks for solving job-shop scheduling. II. Architecture and simulations. In IEEE 1988 International Conference on Neural Networks (pp. 283-290). San Diego, CA: IEEE.
Taillard, E. (1990). Some efficient heuristic methods for the flow shop sequencing problem. European Journal of Operational Research, 47(1), 65-74.
Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational Research, 64(2), 278-285.
Tang, L., Liu, W., & Liu, J. (2005). A neural network model and algorithm for the hybrid flow shop scheduling problem in a dynamic environment. Journal of Intelligent Manufacturing, 16(3), 361-370.
Vallada, E., Ruiz, R., & Framinan, J. M. (2015). New hard benchmark for flowshop scheduling problems minimising makespan. European Journal of Operational Research, 240(3), 666-677.
Vapnik, V. (1995). The Nature of Statistical Learning Theory, Springer-Verlag, New York.
Weckman, G. R., Ganduri, C. V., & Koonce, D. A. (2008). A neural network job-shop scheduler. Journal of Intelligent Manufacturing, 19(2), 191-201.
Zhou, D. N., Cherkassky, V., Baldwin, T. R., & Hong, D. W. (1990, June). Scaling neural network for job-shop scheduling. In 1990 IJCNN International Joint Conference on Neural Networks (pp. 889-894). San Diego, CA: IEEE.