| 研究生: |
吳宜臻 Wu, Yi-Chen |
|---|---|
| 論文名稱: |
建築與植栽的遮蔭特性整合評估與應用 Integrated assessment and application of shading characteristics of buildings and vegetation |
| 指導教授: |
林子平
Lin, Tzu-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 戶外熱舒適 、太陽輻射 、日射透射率 、都市體感溫度 、遮蔭地圖 、舒適路徑分析 |
| 外文關鍵詞: | outdoor thermal confort, Solar Radiation Transmittance, urban thermal comfort assessment, simplified PET formula, solar radiation simulation, comfort path analysis, shading map |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
都市熱島效應(Urban Heat Island, UHI)對行人熱舒適度與都市宜居性構成重大挑戰,特別是在高密度城市環境中。本研究透過太陽輻射透射率(Solar Radiation Transmittance, SRT)地圖與生理等效溫度(Physiologically Equivalent Temperature, PET)分析,量化都市遮蔽效益,並於臺灣的臺南與臺北進行現地測量。研究利用GIS為基礎的SRT地圖標準化樹蔭與建築物陰影對日射穿透的影響,以識別都市中遮蔭不足的區域。
首先,透過理解計算熱舒適度的模式,建立生理等效溫度簡算式,簡易評估體感溫度。結果顯示,太陽輻射、氣溫與風速是影響台灣都市熱舒適度的主要因素。研究使用ArcGIS太陽輻射模擬,並延伸應用於熱舒適地圖製作,協助都市規劃者量化區域遮蔭效益、計算路徑平均PET、辨識高曝曬區域等,提供都市規劃者熱調適策略參考。
在小尺度分析中,樹蔭與建築物陰影皆能降低行人受熱曝露,但影響效果不同。樹蔭提供穩定的降溫效果,其SRT範圍為0.18至0.60,且與葉面積指數(Leaf Area Index, LAI)呈高度負相關(R² = 0.95);建築物陰影的SRT範圍為0.02至0.25,能有效遮蔽太陽輻射,但同時可能因蓄熱效應加劇都市熱島效應。整體而言,適當增加遮蔭可使戶外空間PET降低1至2°C,顯著提升步行舒適度與環境宜居性。
此外,本研究引入網格尺度日射透射率(Grid Solar Radiation Transmittance, GSRT),以100m × 100m單位分析都市整體日射暴露狀態。臺灣常見樹種的SRT範圍為0.2至0.5,平均值約0.3;建築物陰影的SRT範圍為0.02至0.18,平均值為0.14。本研究將樹冠SRT設定為0.3,應用於修正ArcGIS太陽輻射模擬結果,提升樹蔭區日射模擬的精確度。
本研究開發的都市體感溫度簡算模式與遮蔽效益評估方法,可應用於都市遮蔭缺口辨識與舒適步行路徑推薦,為都市熱環境管理與調適規劃提供具體的量化工具。
This study investigates the impact of the Urban Heat Island (UHI) effect on pedestrian thermal comfort and quantifies the shading effectiveness of buildings and vegetation through analysis of Solar Radiation Transmissivity (SRT) and Physiological Equivalent Temperature (PET). Field measurements and simulation validations were conducted in Tainan and Taipei, Taiwan. GIS technology was utilized to generate thermal comfort maps and standardize the influence of tree canopy and building shadows on solar radiation penetration, in order to identify urban areas with insufficient shading.
Results indicate that both tree shade and building shadows reduce pedestrian heat exposure, though their effects differ. Tree shade provides a stable cooling effect, with SRT ranging from 0.18 to 0.60, and shows a strong negative correlation with Leaf Area Index (LAI) (R² = 0.95). Building shadows significantly reduce radiation exposure (SRT = 0.02 to 0.25) but may exacerbate the urban heat island effect. Overall, appropriate increases in shading can reduce PET by 1 to 2°C, effectively enhancing walking comfort and urban livability.
Furthermore, this study established a simplified PET estimation model and integrated SRT adjustments into ArcGIS solar radiation simulations, improving the accuracy of thermal comfort assessments. The results show that solar radiation, air temperature, and wind speed are the primary climatic factors influencing urban thermal comfort in Taiwan. ArcGIS solar radiation simulation can be applied to shading map generation, supporting urban planners in quantifying regional shading effectiveness, prioritizing high-exposure areas, and promoting more sustainable urban heat adaptation strategies.
The simplified urban thermal comfort model developed in this study can be applied for identifying shading gaps, evaluating shading facility effectiveness, and recommending thermally comfortable walking routes, offering a practical quantitative tool for urban heat environment management.
第一節、西文文獻
1.Akbari, H., Pomerantz, M., & Taha, H. (2001). Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Solar energy, 70(3), 295-310.
2.Armson, D., Stringer, P., & Ennos, A. R. (2012). The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban forestry & urban greening, 11(3), 245-255.
3.Azegami, Y., Imanishi, M., Fujiwara, K., & Kusaka, H. (2023). Effects of solar radiation in the streets on pedestrian route choice in a city during the summer season. Building and Environment, 235, 110250.
4.Bird, R. E., & Riordan, C. (1986). Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth's surface for cloudless atmospheres. Journal of climate and applied meteorology, 87-97.
5.Barilotti, A., Turco, S., & Alberti, G. (2006, February). LAI determination in the forestry ecosystem by LiDAR data analysis. In Proceedings of Workshop 3D Remote Sensing in Forestry, Vienna, Austria (Vol. 1415).
6.Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and urban planning, 97(3), 147-155.
7.Bode, C. A., Limm, M. P., Power, M. E., & Finlay, J. C. (2014). Subcanopy Solar Radiation model: Predicting solar radiation across a heavily vegetated landscape using LiDAR and GIS solar radiation models. Remote Sensing of Environment, 154, 387-397.
8.Buller, D. B., English, D. R., Buller, M. K., Simmons, J., Chamberlain, J. A., Wakefield, M., & Dobbinson, S. (2017). Shade sails and passive recreation in public parks of Melbourne and Denver: a randomized intervention. American journal of public health, 107(12), 1869-1875.
9.City of Phoenix. (2010). Tree and shade master plan.
10.Chatzidimitriou, A., & Axarli, K. (2017). Street canyon geometry effects on microclimate and comfort; a case study in Thessaloniki. Procedia environmental sciences, 38, 643-650.
11.Das, P. (Ed.). (1998). Econometrics in theory and practice. Physica-Verlag Heidelberg.
12.Dengel, S., Grace, J., & MacArthur, A. (2015). Transmissivity of solar radiation within a Picea sitchensis stand under various sky conditions. Biogeosciences, 12(14), 4195-4207.
13.Emmanuel, R., Rosenlund, H., & Johansson, E. (2007). Urban shading—a design option for the tropics? A study in Colombo, Sri Lanka. International Journal of Climatology: A Journal of the Royal Meteorological Society, 27(14), 1995-2004.
14.Founda, D., & Santamouris, M. (2017). Synergies between Urban Heat Island and Heat Waves in Athens (Greece), during an extremely hot summer (2012). Scientific reports, 7(1), 1-11.
15.Höppe, P. (1999). The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment. International journal of Biometeorology, 43, 71-75.
16.Hardy, J. P., Melloh, R., Koenig, G., Marks, D., Winstral, A., Pomeroy, J. W., & Link, T. (2004). Solar radiation transmission through conifer canopies. Agricultural and forest meteorology, 126(3-4), 257-270.
17.Hwang, R. L., Lin, T. P., & Matzarakis, A. (2011). Seasonal effects of urban street shading on long-term outdoor thermal comfort. Building and environment, 46(4), 863-870.
18.Han, Y., Jo, Y., & Kim, E. J. (2023). Influence of landscape interventions on thermal comfort under time-varying building shadow; new Gwanghwamun square case, Seoul, South Korea. Heliyon, 9(9).
19.Huang, B., Dong, X., Tian, Y., Yin, M., Qiu, Y., & He, B. J. (2024). Experimental investigation of the thermal usability of outdoor environments in rideability, walkability, entertainmentability, exercisability and workability for urban heat mitigation, adaptation and governance. Natural Hazards, 120(2), 2005-2034.
20.Kuuluvainen, T., & Pukkala, T. (1989). Simulation of within-tree and between-tree shading of direct radiation in a forest canopy: effect of crown shape and sun elevation. Ecological modelling, 49(1-2), 89-100.
21.Kennedy, P. (2008). A guide to econometrics. John Wiley & Sons.
22.Konarska, J., Lindberg, F., Larsson, A., Thorsson, S., & Holmer, B. (2014). Transmissivity of solar radiation through crowns of single urban trees—application for outdoor thermal comfort modelling. Theoretical and applied climatology, 117, 363-376.
23.Koopmans, S., Heusinkveld, B. G., & Steeneveld, G. J. (2020). A standardized Physical Equivalent Temperature urban heat map at 1-m spatial resolution to facilitate climate stress tests in the Netherlands. Building and Environment, 181, 106984.
24.Kim, S. W., & Brown, R. D. (2022). Pedestrians' behavior based on outdoor thermal comfort and micro-scale thermal environments, Austin, TX. Science of the total environment, 808, 152143.
25.Konijnendijk, C. C. (2023). Evidence-based guidelines for greener, healthier, more resilient neighbourhoods: Introducing the 3–30–300 rule. Journal of forestry research, 34(3), 821-830.
26.Lin, T. P., & Matzarakis, A. (2008). Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. International journal of biometeorology, 52, 281-290.
27.Litman, T. (2023). Cool walkability planning: Providing pedestrian thermal comfort in hot climate cities. J Civil Eng Environ Sci, 9(2), 079-086.
28.Liu, J., Tang, H., & Zheng, B. (2024). Thermal Environments of Residential Areas: Sunlight and Building Shadow in a Chinese City with Hot and Humid Summers. Buildings, 14(9), 2730.
29.Matzarakis, A., Mayer, H., & Iziomon, M. G. (1999). Applications of a universal thermal index: physiological equivalent temperature. International journal of biometeorology, 43, 76-84.
30.Meng, Q., Liu, W., Zhang, L., Allam, M., Bi, Y., Hu, X., ... & Jancsó, T. (2022). Relationships between land surface temperatures and neighboring environment in highly urbanized areas: Seasonal and scale effects analyses of Beijing, China. Remote sensing, 14(17), 4340.
31.Melnikov, V. R., Christopoulos, G. I., Krzhizhanovskaya, V. V., Lees, M. H., & Sloot, P. M. (2022). Behavioural thermal regulation explains pedestrian path choices in hot urban environments. Scientific reports, 12(1), 2441.
32.Muslimin, R., & Brasier, N. (2024). An analysis of outdoor thermal comfort impact on pedestrian walking patterns at sub-hour timescales with agent-based modelling. Smart and Sustainable Built Environment.
33.Nijssen, B., & Lettenmaier, D. P. (1999). A simplified approach for predicting shortwave radiation transfer through boreal forest canopies. Journal of Geophysical Research: Atmospheres, 104(D22), 27859-27868.
34.Oke, T. R. (1989). The micrometeorology of the urban forest. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 324(1223), 335-349.
35.Parsons, P. G., Neale, R., Wolski, P., & Green, A. (1998). The shady side of solar protection. Medical journal of Australia, 168(7), 327-330.
36.Parisi, A. V., Kimlin, M. G., Wong, J. C. F., & Wilson, M. (2000). Diffuse component of solar ultraviolet radiation in tree shade. Journal of Photochemistry and Photobiology B: Biology, 54(2-3), 116-120.
37.Qu, Y., Shaker, A., Korhonen, L., Silva, C. A., Jia, K., Tian, L., & Song, J. (2020). Direct estimation of forest leaf area index based on spectrally corrected airborne LiDAR pulse penetration ratio. Remote Sensing, 12(2), 217.
38.Robitu, M., Musy, M., Inard, C., & Groleau, D. (2006). Modeling the influence of vegetation and water pond on urban microclimate. Solar energy, 80(4), 435-447.
39.Rahman, M. A., Dervishi, V., Moser-Reischl, A., Ludwig, F., Pretzsch, H., Rötzer, T., & Pauleit, S. (2021). Comparative analysis of shade and underlying surfaces on cooling effect. Urban Forestry & Urban Greening, 63, 127223.
40.Shashua-Bar, L., & Hoffman, M. E. (2000). Vegetation as a climatic component in the design of an urban street: An empirical model for predicting the cooling effect of urban green areas with trees. Energy and buildings, 31(3), 221-235.
41.Sabol, J., Patocka, Z., & Mikita, T. (2014). Usage of LiDAR data for leaf area index estimation. GeoScience Engineering, 60(3), 10.
42.Sirakova, T. A. (2018). Urban Planning: From GIS and BIM straight to CIM. Practical application in the urban area of Porto. Civil Engineering.
43.Saric-Bosanac, S. S., Clark, A. K., Nguyen, V., Pan, A., Chang, F. Y., Li, C. S., & Sivamani, R. K. (2019). Quantification of ultraviolet (UV) radiation in the shade and in direct sunlight. Dermatology online journal, 25(7).
44.Shatu, F., Yigitcanlar, T., & Bunker, J. (2019). Shortest path distance vs. least directional change: Empirical testing of space syntax and geographic theories concerning pedestrian route choice behaviour. Journal of Transport Geography, 74, 37-52.
45.Speak, A., Montagnani, L., Wellstein, C., & Zerbe, S. (2020). The influence of tree traits on urban ground surface shade cooling. Landscape and urban planning, 197, 103748.
46.Sun, T., Chen, L., & Sun, R. (2024). Cooling effects in urban communities: Parsing green spaces and building shadows. Urban Forestry & Urban Greening, 94, 128264.
47.Tooke, T. R., Coops, N. C., Voogt, J. A., & Meitner, M. J. (2011). Tree structure influences on rooftop-received solar radiation. Landscape and Urban Planning, 102(2), 73-81.
48.Vartholomaios, A. (2023, June). Follow the shade: detection of optimally shaded pedestrian paths within the historic city center of Thessaloniki. In IOP Conference Series: Earth and Environmental Science (Vol. 1196, No. 1, p. 012070). IOP Publishing.
49.Wigmosta, M. S., Vail, L. W., & Lettenmaier, D. P. (1994). A distributed hydrology‐vegetation model for complex terrain. Water resources research, 30(6), 1665-1679.
50.Wetherill, G. B. (Ed.). (2012). Intermediate statistical methods. Springer Science & Business Media.
51.Xiong, K., & He, B. J. (2024). Planning for heat-resilient educational precincts: Framework formulation, cooling infrastructure selection and walkable routes determination. Sustainable Cities and Society, 101, 105183.
52.Zhou, W., Qian, Y., Li, X., Li, W., & Han, L. (2014). Relationships between land cover and the surface urban heat island: seasonal variability and effects of spatial and thematic resolution of land cover data on predicting land surface temperatures. Landscape ecology, 29, 153-167.
53.Ziter, C. D., Pedersen, E. J., Kucharik, C. J., & Turner, M. G. (2019). Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proceedings of the National Academy of Sciences, 116(15), 7575-7580.
54.Zare, S., Shirvan, H. E., Hemmatjo, R., Nadri, F., Jahani, Y., Jamshidzadeh, K., & Paydar, P. (2019). A comparison of the correlation between heat stress indices (UTCI, WBGT, WBDT, TSI) and physiological parameters of workers in Iran. Weather and Climate Extremes, 26, 100213.
55.Zhang, X., & Ludwig, F. (2025). Shade for Pedestrians: A Novel Approach to Calculate the Spatio-temporal Shade Benefits of Street Trees Considering Pedestrian Flow. Building and Environment, 112662.
第二節、中文文獻
1.陳佳君. (2018). 戶外觀光活動熱舒適性研究-以台南孔廟園區為例.
2.李岳蓉.(2024). 都市綠化之可及性評估及熱輻射降溫模式探討
3.魏育瑛. (2024). 喬木遮蔭程度對人體熱舒適的影響及建立應用評估工具.
4.許晃雄(Ed.)。(2024)。臺灣氣候變遷分析系列報告:暖化趨勢下的臺灣極端高溫與衝擊。國家科學及技術委員會臺灣氣候變遷推估資訊與調適知識平台。
校內:2028-06-06公開