簡易檢索 / 詳目顯示

研究生: 古德翰
D.V.N.Goutham
論文名稱: 探討肝腫瘤相關巨噬細胞中由細胞自噬調節之半乳糖凝集素1的分泌與角色
Autophagy-dependent secretion of galectin-1 by tumor-associated macrophages and its role in hepatocellular carcinoma
指導教授: 張志鵬
Chang, Chih-Peng
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 141
中文關鍵詞: 肝細胞癌腫瘤相關巨噬細胞自噬半乳糖凝集素 1高遷移率群盒蛋白 1
外文關鍵詞: Hepatocellular carcinoma, Tumor-associated macrophages, Autophagy, Galectin-1, High-mobility group box protein 1
相關次數: 點閱:78下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    肝細胞癌 (HCC) 是台灣最常見的癌症之一,在癌症相關死亡人數中排名第二。腫瘤相關巨噬細胞 (TAM) 在腫瘤微環境 (TME) 中發揮重要作用,促進 HCC 腫瘤發生。自噬作用是維持細胞穩定型態所必需的溶酶體途徑。選擇性自噬作用保護細胞免受病原體入侵與損傷,但其在調節腫瘤發展所必需的 TAM 分泌因子中作用尚不清楚。 Galectin-1 是一種分泌型凝集素,具有促生物體活性,已知與巨噬細胞密切相關。其在調節免疫抑制和腫瘤發生方面有潛在作用,但是galectin-1 的來源和分泌途徑仍然未知。使用巨噬細胞分化模型,我們發現骨髓來源的巨噬細胞 (BMDM) 在存在肝癌條件培養基 (CM) 的情況下會分化為 M2 表現型,並主動分泌 galectin-1。這種分泌的 galectin-1 在促進 SCID 小鼠 HCC 的腫瘤發生中扮演重要角色。此外,galectin-1 抑製劑的治療消除了 TAM 對蕾莎瓦誘導的細胞死亡的保護活性。自噬作用的抑制阻止了肝癌刺激的巨噬細胞 (HSM) 分泌 galectin-1。獨特的 TLR2 依賴性活性氧 (ROS) 產生被激活以誘導自噬並調節 HSM 中的 galectin-1 分泌。此外,對一些HCC 患者的分析表明,自噬作用與 TAM 中的 galectin-1 成負相關,這進一步與 HCC 患者的總體生存率較差相關。 HCC 衍生或使用重組的高遷移率族框蛋白 (HMGB1) 能夠觸發這種 TLR2 介導的 galectin-1 分泌。此外,通過分析HCC患者樣本的血清,我們發現HMGB1與galectin-1成正相關。我們的研究結果提供了一條通過 TLR2 介導的 HMGB1 信號選擇性自噬分泌 galectin-1 的新途徑。此外,我們的研究將提供一種新的生物標誌物來預測 HCC 結果和提高化療療效的新治療策略
    關鍵詞。肝細胞癌、腫瘤相關巨噬細胞、自噬、半乳糖凝集素 1、高遷移率群盒蛋白 1

    Hepatocellular carcinoma (HCC) is one of the most common cancers in Taiwan and the second in cancer-related deaths. Tumor-associated macrophages (TAMs) play an essential role in tumor microenvironment (TME) to promote HCC tumorigenesis. Autophagy is a lysosomal pathway essential to maintain cellular homeostasis. Selective autophagy protects the cells from pathogen invasion and stress damage, but its role in regulating the secreting factors in TAMs essential for tumor progression is not clear. Galectin-1 is a secretory lectin with protumeric activities and known to be associated strongly with macrophages. Acknowledging its potential effect in regulating the immunosuppression and tumorigenesis, the source and secretory pathways of galectin-1 is still unknown. Using a macrophage cell differentiation model, we found that bone marrow derived macrophages (BMDM) will differentiate into a M2 like phenotype in presence of hepatoma condition medium (CM) and actively secretes galectin-1. This secreted galectin-1 was found to play an essential role in promoting the tumorigenesis of HCC in SCID mice. In addition, treatment of a galectin-1 inhibitor abolished the protective activity of TAMs to sorafenib-induced cell death. Inhibition of autophagy blocked the secretion of galectin-1 from hepatoma stimulated macrophages (HSMs). A unique TLR2-dependent reactive oxygen species (ROS) production was activated to induce autophagy and regulate galectin-1 secretion in HSMs. Furthermore, analysis of the limited HCC patients showed that autophagy is negatively correlated with galectin-1 in TAMs which further correlated with the poor overall survival rate of HCC patients. HCC-derived or recombinant high mobility group box protein (HMGB1) is able to trigger this TLR2-mediated galectin-1 secretion. Moreover, by analyzing the serum of HCC patient samples, we found that HMGB1 is positively correlated with galectin-1. Our findings provide a novel pathway of galectin-1 secretion by TLR2-mediated selective autophagy signaled from HMGB1. Moreover, our study will provide a novel biomarker to predict the HCC outcome and new therapeutic strategies to increase the efficacy of the chemotherapy
    Keywords. Hepatocellular carcinoma, Tumor-associated macrophages, Autophagy, Galectin-1, High-mobility group box protein 1

    Contents Abstract I Acknowledgement II Contents III List of figures XI Abbreviation index XIII 1. Introduction 1.1 Hepatocellular carcinoma 1 1-1.1 Epidemology of HCC and staging 1 1-1.2 Risk factors or causes 2 1-1.3 Biomarkers 3 1-1.4 Treatment 5 1.2 Tumor microenvironment 7 1-2.1 Cancer-associated fibroblasts 8 1-2.2 Tumor-associated endothelial cells 8 1-2.3 Extracellular matrix 9 1-2.4 Hepatic stellate cells 9 1-2.5 Immune and inflammatory cells 10 1-2.5.1 Tumor-associated neutrophils 10 1-2.5.2 Tumor infiltering Tregs 11 1-2.5.3 Marrow derived suppressor cells 11 1-2.5.4 Tumor-associated macrophages 12 1-3 TAM derived factors in HCC 13 1-3.1 IL-6 14 1-3.2 TNF-α 14 1-3.3 IL-10 14 1-3.4 IL-17 14 1-3.5 Chemokines 15 1-3.6 TAM-derived growth factors 15 1-3.6.1 TGF-β 15 1-3.6.2 VEGF 15 1-3.6.3 Other TAM-derived factors 16 1-4 Galectin-1 and its inflammatory responses 16 1-4.1 Galectin-1 in tumor microenvironment 17 1-4.2 Galectin-1 in fibroblast activation 18 1-4.3 Galectin-1 in tumor endothelial cells 19 1-4.4 Galectin-1 in macrophages and other immune cells 20 1-5 Autophagy and HCC tumorigenesis 22 1-5.1 Autophagy in HCC targeted therapy 23 1-6 Secretory autophagy 24 1-7 HMGB1 24 2. Specific aims 26 3. Materials and methods 27 3-1 Materials 27 3-1.1 Cells and media 27 3-1.2 Antibodies 27 3-1.3 Plasmid 31 3-1.4 siRNA 32 3-1.5 Inhibitors 32 3-1.6 Recombinant proteins 33 3-1.7 Reagents 33 3-1.8 Consumables and devices 39 3-2 Methods 3-2.1 Culture of bone marrow-derived macrophages 40 3-2.2 Human monocyte isolation 41 3-2.3 Immunostaining 41 3-2.4 Total internal reflection microscopy (TIRF) imaging 42 3-2.5 RNA extraction and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assay 42 3-2.6 Western blot 43 3-2.7 Immuno-electron microscopy 43 3-2.8 Lentivirus-mediated shRNA transfection 44 3-2.9 siRNA-based gene silence 45 3-2.10 Lactate dehydrogenase assay 45 3-2.11 ELISA 45 3-2.12 Measurement of intracellular ROS 46 3-2.13 Tumor supernatant preparation 46 3-2.14 Antibody-neutralizing experiment 46 3-2.15 Patients and specimens 46 3-2.16 Dual immunofluorescence 47 3-2.17 Autophagosome extraction 48 3-2.18 Mice and murine insitu hepatoma model 48 3-2.19 Gsea analysis 49 3-2.20 Statistical analysis 49 4 Results 4.1 Galectin-1 secretion by TAMs associated with poor prognosis of HCC 50 4.1.1 Macrophages in HCC patients showed enhanced expression of galectin-1 50 4.1.2 Tumor cell CM induced the expression and secretion of galectin-1 from BMDMs 51 4.1.3 Loss of galectin-1 in macrophages inhibited the HCC progression in murine model 52 4.2 Mechanisms and signaling of galectin-1 secretion in BMDMs 52 4.2.1 Activated autophagy correlated with the increased secretion of galectin-1 in HSMs 52 4.2.2 p62, MVB, Rab11 and VAMP7 are required for autophagosomes to transport galectin-1 54 4.2.3 TLR2 dependent reactive oxygen species production regulates the secretion of galectin-1 in HSMs 55 4.2.4 HCC patients showed altered expression of autophagy in macrophages 56 4.2.5 High autophagy activity was associated with low galectin-1 expression in tumor-associated macrophages of HCC tumor tissues and cooccurrence of these two events correlated with poor overall survival rate of HCC patients 56 4.3 Tumor factors secretes galectin-1 4-3.1 Hepatoma derived HMGB1 promotes the secretion of galectin-1 58 4-3.2 Hepatoma derived HMGB1-dependent galectin-1 secretion contribute to the poor prognosis of HCC 58 5. Discussion 5-1 Galectin-1 as a target in tumor microenvironment 5-1.1 TME-associated-galectin-1 pathogenic roles in HCC 60 5-1.2 Galectin-1 expression and secretion is enhanced in TAMs 61 5-1.3 Galectin-1 secretion contributes to promote HCC Tumorienesis 62 5-2 Mechanisms involved in secretion of galectin 5-2.1 Autophagy mediates the secretion of galectin-1 63 5-2.2 Mechanisms of autophagy-mediated galectin-1 secretion and its signaling 64 5-2.3 LC3 cargos galectin-1 in autophagosomes 65 5-2.4 MVBs are associated with galectin-1 secretion 66 5-2.5 HSMs secretes galectin-1 via Rab-11-mediated amphisomes 67 5-2.6 VAMP7 facilitates the secretion of galectin-1 from TAMs 69 5-2.7 p62 enhances the secretion of galectin-1 70 5-2.8 ROS is required to induce galectin-1 secretion by inducing autophagy 71 5-2.9 TLR signaling mechanisms behind the secretion of galectin-1 72 5-2.10 5.10 Secretion of galectin-1 through exosomes 73 5-3 TAMs-associated galectin-1 as biomarker 5-3.1 Protective role of TAMs-associated galectin-1 in HCC 74 5.3.2 Galectin-1 as a potential therapy target 75 5-4 HMGB1 as a biomarker of HCC 5-4.1 HMGB1 enhances the secretion of galectin-1 in HCC 75 5-4.2 HMGB1 in clinical applications 77 6. Conclusion 78 7. References 79 8.Tables 93

    7. References
    1. Jemal, A., et al., Global cancer statistics. CA: A Cancer Journal for Clinicians, 2011. 61(2): p. 69-90.

    2. Monsour Jr, H.P., et al., Hepatocellular carcinoma: the rising tide from east to west—a review of epidemiology, screening and tumor markers. Translational Cancer Research, 2013. 2(6): p. 492-506.

    3. Rawla, P., et al., Update in global trends and aetiology of hepatocellular carcinoma. Contemp Oncol (Pozn), 2018. 22(3): p. 141-150.

    4. Marrero, J.A., et al., Prognosis of hepatocellular carcinoma: comparison of 7 staging systems in an American cohort. Hepatology, 2005. 41(4): p. 707-16.

    5. Subramaniam, S., R.K. Kelley, and A.P. Venook, A review of hepatocellular carcinoma (HCC) staging systems. Chinese Clinical Oncology, 2013. 2(4): p. 3.

    6. Kinoshita, A., et al., Staging systems for hepatocellular carcinoma: Current status and future perspectives. World J Hepatol, 2015. 7(3): p. 406-24.

    7. Yu, S.J., A concise review of updated guidelines regarding the management of hepatocellular carcinoma around the world: 2010-2016. Clin Mol Hepatol, 2016. 22(1): p. 7-17.

    8. Okuda, K., et al., Natural history of hepatocellular carcinoma and prognosis in relation to treatment. Study of 850 patients. Cancer, 1985. 56(4): p. 918-28.

    9. Llovet, J.M., C. Brú, and J. Bruix, Prognosis of hepatocellular carcinoma: the BCLC staging classification. Semin Liver Dis, 1999. 19(3): p. 329-38.

    10. Daniele, B., et al., Cancer of the Liver Italian Program (CLIP) score for staging hepatocellular carcinoma. Hepatol Res, 2007. 37 Suppl 2: p. S206-9.

    11. Gomes, M.A., et al., Hepatocellular carcinoma: epidemiology, biology, diagnosis, and therapies. Rev Assoc Med Bras (1992), 2013. 59(5): p. 514-24.

    12. Bruix, J., et al., Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol, 2001. 35(3): p. 421-30.

    13. Bréchot, C., et al., Molecular bases for the development of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). Semin Cancer Biol, 2000. 10(3): p. 211-31.
    14. Yki-Järvinen, H., Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol, 2014. 2(11): p. 901-10.

    15. Jarvis, H., et al., Metabolic risk factors and incident advanced liver disease in non-alcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis of population-based observational studies. PLoS Med, 2020. 17(4): p. e1003100.

    16. Liao, S.F., et al., Fifteen-year population attributable fractions and causal pies of risk factors for newly developed hepatocellular carcinomas in 11,801 men in Taiwan. PLoS One, 2012. 7(4): p. e34779.

    17. Jelic, S. and G.C. Sotiropoulos, Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 2010. 21 Suppl 5: p. v59-64.

    18. Guy, J. and M.G. Peters, Liver disease in women: the influence of gender on epidemiology, natural history, and patient outcomes. Gastroenterol Hepatol (N Y), 2013. 9(10): p. 633-9.

    19. Eagon, P.K., Alcoholic liver injury: influence of gender and hormones. World J Gastroenterol, 2010. 16(11): p. 1377-84.

    20. Orman, E.S., G. Odena, and R. Bataller, Alcoholic liver disease: pathogenesis, management, and novel targets for therapy. J Gastroenterol Hepatol, 2013. 28 Suppl 1(0 1): p. 77-84.

    21. Setshedi, M., J.R. Wands, and S.M. Monte, Acetaldehyde adducts in alcoholic liver disease. Oxid Med Cell Longev, 2010. 3(3): p. 178-85.

    22. El-Serag, H.B., Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology, 2012. 142(6): p. 1264-1273.e1.

    23. Yang, J.D. and L.R. Roberts, Hepatocellular carcinoma: A global view. Nat Rev Gastroenterol Hepatol, 2010. 7(8): p. 448-58.

    24. Alqurashi, N., S.M. Hashimi, and M.Q. Wei, Chemical Inhibitors and microRNAs (miRNA) Targeting the Mammalian Target of Rapamycin (mTOR) Pathway: Potential for Novel Anticancer Therapeutics. Int J Mol Sci, 2013. 14(2): p. 3874-900.

    25. Mínguez, B. and A. Lachenmayer, Diagnostic and prognostic molecular markers in hepatocellular carcinoma. Dis Markers, 2011. 31(3): p. 181-90.

    26. Schütte, K., et al., Current biomarkers for hepatocellular carcinoma: Surveillance, diagnosis and prediction of prognosis. World J Hepatol, 2015. 7(2): p. 139-49.
    27. Biselli-Chicote, P.M., et al., VEGF gene alternative splicing: pro- and anti-angiogenic isoforms in cancer. J Cancer Res Clin Oncol, 2012. 138(3): p. 363-70.

    28. Kedmi, M., et al., EGF induces microRNAs that target suppressors of cell migration: miR-15b targets MTSS1 in breast cancer. Sci Signal, 2015. 8(368): p. ra29.

    29. Okada, H., et al., Inhibition of microRNA-214 ameliorates hepatic fibrosis and tumor incidence in platelet-derived growth factor C transgenic mice. Cancer Sci, 2015. 106(9): p. 1143-52.

    30. Jung, H.J. and Y. Suh, Regulation of IGF -1 signaling by microRNAs. Frontiers in Genetics, 2015. 5(472).

    31. Feng, M. and M. Ho, Glypican-3 antibodies: a new therapeutic target for liver cancer. FEBS Lett, 2014. 588(2): p. 377-82.

    32. Wen, Y., et al., Role of Osteopontin in Liver Diseases. Int J Biol Sci, 2016. 12(9): p. 1121-8.

    33. Dong, Q., et al., Osteopontin promotes epithelial-mesenchymal transition of hepatocellular carcinoma through regulating vimentin. Oncotarget, 2016. 7(11): p. 12997-3012.

    34. Ba, M.C., et al., GP73 expression and its significance in the diagnosis of hepatocellular carcinoma: a review. Int J Clin Exp Pathol, 2012. 5(9): p. 874-81.

    35. Mao, Y., et al., Golgi protein 73 (GOLPH2) is a valuable serum marker for hepatocellular carcinoma. Gut, 2010. 59(12): p. 1687-93.

    36. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): p. 281-97.

    37. Gramantieri, L., et al., MicroRNA involvement in hepatocellular carcinoma. J Cell Mol Med, 2008. 12(6a): p. 2189-204.

    38. Liu, M., L. Jiang, and X.Y. Guan, The genetic and epigenetic alterations in human hepatocellular carcinoma: a recent update. Protein Cell, 2014. 5(9): p. 673-91.

    39. Thurnherr, T., et al., Differentially Expressed miRNAs in Hepatocellular Carcinoma Target Genes in the Genetic Information Processing and Metabolism Pathways. Sci Rep, 2016. 6: p. 20065.

    40. Li, W., et al., Insulin promotes glucose consumption via regulation of miR-99a/mTOR/PKM2 pathway. PLoS One, 2013. 8(6): p. e64924.
    41. Forner, A., et al., Treatment of intermediate-stage hepatocellular carcinoma. Nat Rev Clin Oncol, 2014. 11(9): p. 525-35.

    42. Maida, M., et al., Staging systems of hepatocellular carcinoma: a review of literature. World J Gastroenterol, 2014. 20(15): p. 4141-50.

    43. McGlynn, K.A. and W.T. London, The global epidemiology of hepatocellular carcinoma: present and future. Clin Liver Dis, 2011. 15(2): p. 223-43, vii-x.

    44. Bruix, J. and M. Sherman, Management of hepatocellular carcinoma: an update. Hepatology, 2011. 53(3): p. 1020-2.

    45. Ryan, M.J., et al., Ablation techniques for primary and metastatic liver tumors. World J Hepatol, 2016. 8(3): p. 191-9.

    46. Kang, T.W. and H. Rhim, Recent Advances in Tumor Ablation for Hepatocellular Carcinoma. Liver Cancer, 2015. 4(3): p. 176-87.

    47. Waller, L.P., V. Deshpande, and N. Pyrsopoulos, Hepatocellular carcinoma: A comprehensive review. World J Hepatol, 2015. 7(26): p. 2648-63.

    48. Lencioni, R., Chemoembolization in patients with hepatocellular carcinoma. Liver Cancer, 2012. 1(1): p. 41-50.

    49. Carr, B.I., et al., Economic evaluation of sorafenib in unresectable hepatocellular carcinoma. J Gastroenterol Hepatol, 2010. 25(11): p. 1739-46.

    50. Han, K., et al., Treatment of hepatocellular carcinoma with portal venous tumor thrombosis: A comprehensive review. World J Gastroenterol, 2016. 22(1): p. 407-16.

    51. Villanueva, A., et al., Hepatocellular carcinoma: novel molecular approaches for diagnosis, prognosis, and therapy. Annu Rev Med, 2010. 61: p. 317-28.

    52. Baines, A.T., D. Xu, and C.J. Der, Inhibition of Ras for cancer treatment: the search continues. Future Med Chem, 2011. 3(14): p. 1787-808.

    53. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-674.

    54. Hinshaw, D.C. and L.A. Shevde, The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Res, 2019. 79(18): p. 4557-4566.

    55. Ribeiro Franco, P.I., et al., Tumor microenvironment components: Allies of cancer progression. Pathology - Research and Practice, 2020. 216(1): p. 152729.
    56. Lugano, R., M. Ramachandran, and A. Dimberg, Tumor angiogenesis: causes, consequences, challenges and opportunities. Cellular and Molecular Life Sciences, 2020. 77(9): p. 1745-1770.

    57. Lei, X., et al., Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett, 2020. 470: p. 126-133.

    58. Lu, C., et al., Current perspectives on the immunosuppressive tumor microenvironment in hepatocellular carcinoma: challenges and opportunities. Mol Cancer, 2019. 18(1): p. 130.

    59. Huang, B., M. Huang, and Q. Li, Cancer-Associated Fibroblasts Promote Angiogenesis of Hepatocellular Carcinoma by VEGF-Mediated EZH2/VASH1 Pathway. Technol Cancer Res Treat, 2019. 18: p. 1533033819879905.

    60. Kalluri, R. and M. Zeisberg, Fibroblasts in cancer. Nat Rev Cancer, 2006. 6(5): p. 392-401.

    61. Tomasek, J.J., et al., Myofibroblasts and mechano-regulation of connective tissue remodelling. Nature Reviews Molecular Cell Biology, 2002. 3(5): p. 349-363.

    62. Terada, T., et al., Alpha-smooth muscle actin-positive stromal cells in cholangiocarcinomas, hepatocellular carcinomas and metastatic liver carcinomas. J Hepatol, 1996. 24(6): p. 706-12.

    63. Shiga, K., et al., Cancer-Associated Fibroblasts: Their Characteristics and Their Roles in Tumor Growth. Cancers (Basel), 2015. 7(4): p. 2443-58.

    64. Lau, E.Y., et al., Cancer-Associated Fibroblasts Regulate Tumor-Initiating Cell Plasticity in Hepatocellular Carcinoma through c-Met/FRA1/HEY1 Signaling. Cell Rep, 2016. 15(6): p. 1175-89.

    65. Cirri, P. and P. Chiarugi, Cancer associated fibroblasts: the dark side of the coin. Am J Cancer Res, 2011. 1(4): p. 482-97.

    66. Giannelli, G., E. Villa, and M. Lahn, Transforming growth factor-β as a therapeutic target in hepatocellular carcinoma. Cancer Res, 2014. 74(7): p. 1890-4.

    67. Pralhad, T., S. Madhusudan, and K. Rajendrakumar, Concept, mechanisms and therapeutics of angiogenesis in cancer and other diseases. J Pharm Pharmacol, 2003. 55(8): p. 1045-53.

    68. Poon, R.T., et al., Prognostic significance of serum vascular endothelial growth factor and endostatin in patients with hepatocellular carcinoma. Br J Surg, 2004. 91(10): p. 1354-60.
    69. Li, X.M., et al., Serum vascular endothelial growth factor is a predictor of invasion and metastasis in hepatocellular carcinoma. J Exp Clin Cancer Res, 1999. 18(4): p. 511-7.

    70. Hynes, R.O., The extracellular matrix: not just pretty fibrils. Science, 2009. 326(5957): p. 1216-9.

    71. Lu, P., V.M. Weaver, and Z. Werb, The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol, 2012. 196(4): p. 395-406.

    72. Chung, T.W., Y.C. Lee, and C.H. Kim, Hepatitis B viral HBx induces matrix metalloproteinase-9 gene expression through activation of ERK and PI-3K/AKT pathways: involvement of invasive potential. Faseb j, 2004. 18(10): p. 1123-5.

    73. Ou, D.P., et al., The hepatitis B virus X protein promotes hepatocellular carcinoma metastasis by upregulation of matrix metalloproteinases. Int J Cancer, 2007. 120(6): p. 1208-14.

    74. Hayasaka, A., et al., Elevated plasma levels of matrix metalloproteinase-9 (92-kd type IV collagenase/gelatinase B) in hepatocellular carcinoma. Hepatology, 1996. 24(5): p. 1058-62.

    75. Lee, U.E. and S.L. Friedman, Mechanisms of hepatic fibrogenesis. Best Pract Res Clin Gastroenterol, 2011. 25(2): p. 195-206.

    76. Amann, T., et al., Activated hepatic stellate cells promote tumorigenicity of hepatocellular carcinoma. Cancer Sci, 2009. 100(4): p. 646-53.

    77. Coulouarn, C., et al., Hepatocyte-stellate cell cross-talk in the liver engenders a permissive inflammatory microenvironment that drives progression in hepatocellular carcinoma. Cancer Res, 2012. 72(10): p. 2533-42.

    78. Zhao, W., et al., Hepatic stellate cells promote tumor progression by enhancement of immunosuppressive cells in an orthotopic liver tumor mouse model. Lab Invest, 2014. 94(2): p. 182-91.

    79. Xu, Y., et al., Activated hepatic stellate cells promote liver cancer by induction of myeloid-derived suppressor cells through cyclooxygenase-2. Oncotarget, 2016. 7(8): p. 8866-78.

    80. Shaul, M.E. and Z.G. Fridlender, Neutrophils as active regulators of the immune system in the tumor microenvironment. J Leukoc Biol, 2017. 102(2): p. 343-349.

    81. Sakaguchi, S., et al., Regulatory T cells and immune tolerance. Cell, 2008. 133(5): p. 775-87.
    82. Sakaguchi, S., et al., FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol, 2010. 10(7): p. 490-500.

    83. Wang, G., et al., WITHDRAWN:PPARα Suppresses PD-L1-Mediated Immune Escape by Down-regulating SPP1 in Human Hepatocellular Carcinoma. Cancer Res Treat, 2019.

    84. Semaan, A., et al., CXCL12 expression and PD-L1 expression serve as prognostic biomarkers in HCC and are induced by hypoxia. Virchows Arch, 2017. 470(2): p. 185-196.

    85. Wei, R., et al., Hepatoma cell-derived leptin downregulates the immunosuppressive function of regulatory T-cells to enhance the anti-tumor activity of CD8+ T-cells. Immunol Cell Biol, 2016. 94(4): p. 388-99.

    86. Rahma, O.E. and F.S. Hodi, The Intersection between Tumor Angiogenesis and Immune Suppression. Clin Cancer Res, 2019. 25(18): p. 5449-5457.

    87. Haile, L.A., T.F. Greten, and F. Korangy, Immune suppression: the hallmark of myeloid derived suppressor cells. Immunol Invest, 2012. 41(6-7): p. 581-94.

    88. Limagne, E., et al., Tim-3/galectin-9 pathway and mMDSC control primary and secondary resistances to PD-1 blockade in lung cancer patients. Oncoimmunology, 2019. 8(4): p. e1564505.

    89. Hoechst, B., et al., Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology, 2009. 50(3): p. 799-807.

    90. Hu, C.E., et al., Up-regulated myeloid-derived suppressor cell contributes to hepatocellular carcinoma development by impairing dendritic cell function. Scand J Gastroenterol, 2011. 46(2): p. 156-64.

    91. Dong, P., et al., CD86⁺/CD206⁺, Diametrically Polarized Tumor-Associated Macrophages, Predict Hepatocellular Carcinoma Patient Prognosis. Int J Mol Sci, 2016. 17(3): p. 320.

    92. Galdiero, M.R., et al., Tumor associated macrophages and neutrophils in cancer. Immunobiology, 2013. 218(11): p. 1402-10.

    93. Sica, A. and A. Mantovani, Macrophage plasticity and polarization: in vivo veritas. J Clin Invest, 2012. 122(3): p. 787-95.

    94. Yang, Y., et al., Crosstalk between hepatic tumor cells and macrophages via Wnt/β-catenin signaling promotes M2-like macrophage polarization and reinforces tumor malignant behaviors. Cell Death & Disease, 2018. 9(8): p. 793.

    95. Wang, D., et al., Macrophage-derived CCL22 promotes an immunosuppressive tumor microenvironment via IL-8 in malignant pleural effusion. Cancer Lett, 2019. 452: p. 244-253.

    96. Mamrot, J., et al., Molecular model linking Th2 polarized M2 tumour-associated macrophages with deaminase-mediated cancer progression mutation signatures. Scand J Immunol, 2019. 89(5): p. e12760.

    97. Zhou, J., et al., Increased intratumoral regulatory T cells are related to intratumoral macrophages and poor prognosis in hepatocellular carcinoma patients. Int J Cancer, 2009. 125(7): p. 1640-8.

    98. Wu, Q., et al., Blocking Triggering Receptor Expressed on Myeloid Cells-1-Positive Tumor-Associated Macrophages Induced by Hypoxia Reverses Immunosuppression and Anti-Programmed Cell Death Ligand 1 Resistance in Liver Cancer. Hepatology, 2019. 70(1): p. 198-214.

    99. Zhang, D., et al., TGF-β secreted by tumor-associated macrophages promotes proliferation and invasion of colorectal cancer via miR-34a-VEGF axis. Cell Cycle, 2018. 17(24): p. 2766-2778.

    100. Darvishi, B., et al., Recruited bone marrow derived cells, local stromal cells and IL-17 at the front line of resistance development to anti-VEGF targeted therapies. Life Sci, 2019. 217: p. 34-40.

    101. Liu, J.Y., et al., Delivery of siRNA Using CXCR4-targeted Nanoparticles Modulates Tumor Microenvironment and Achieves a Potent Antitumor Response in Liver Cancer. Mol Ther, 2015. 23(11): p. 1772-1782.

    102. Zhang, W., et al., Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects. Clin Cancer Res, 2010. 16(13): p. 3420-30.

    103. Chang, C.P., et al., Targeting NFKB by autophagy to polarize hepatoma-associated macrophage differentiation. Autophagy, 2013. 9(4): p. 619-21.

    104. Yao, W., et al., A Natural CCR2 Antagonist Relieves Tumor-associated Macrophage-mediated Immunosuppression to Produce a Therapeutic Effect for Liver Cancer. EBioMedicine, 2017. 22: p. 58-67.
    105. Kuang, D.M., et al., Activated monocytes in peritumoral stroma of hepatocellular carcinoma promote expansion of memory T helper 17 cells. Hepatology, 2010. 51(1): p. 154-64.

    106. Zhang, J.P., et al., Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J Hepatol, 2009. 50(5): p. 980-9.
    107. Fausto, N., Liver regeneration. J Hepatol, 2000. 32(1 Suppl): p. 19-31.

    108. Berasain, C., et al., Inflammation and liver cancer: new molecular links. Ann N Y Acad Sci, 2009. 1155: p. 206-21.

    109. Ju, M.J., et al., Peritumoral activated hepatic stellate cells predict poor clinical outcome in hepatocellular carcinoma after curative resection. Am J Clin Pathol, 2009. 131(4): p. 498-510.

    110. Gao, Q., et al., Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol, 2007. 25(18): p. 2586-93.

    111. Ryschich, E., et al., Molecular fingerprinting and autocrine growth regulation of endothelial cells in a murine model of hepatocellular carcinoma. Cancer Res, 2006. 66(1): p. 198-211.

    112. Chu, H., et al., Functional expression of CXC chemokine recepter-4 mediates the secretion of matrix metalloproteinases from mouse hepatocarcinoma cell lines with different lymphatic metastasis ability. Int J Biochem Cell Biol, 2007. 39(1): p. 197-205.
    113. Drucker, C., et al., Non-parenchymal liver cells support the growth advantage in the first stages of hepatocarcinogenesis. Carcinogenesis, 2006. 27(1): p. 152-61.

    114. Yang, J.D., I. Nakamura, and L.R. Roberts, The tumor microenvironment in hepatocellular carcinoma: current status and therapeutic targets. Semin Cancer Biol, 2011. 21(1): p. 35-43.

    115. Giannelli, G., et al., Laminin-5 with transforming growth factor-beta1 induces epithelial to mesenchymal transition in hepatocellular carcinoma. Gastroenterology, 2005. 129(5): p. 1375-83.

    116. Zhu, A.X., et al., Exploratory analysis of early toxicity of sunitinib in advanced hepatocellular carcinoma patients: kinetics and potential biomarker value. Clin Cancer Res, 2011. 17(4): p. 918-27.

    117. Zhang, H., et al., The prognostic significance of preoperative plasma levels of osteopontin in patients with hepatocellular carcinoma. J Cancer Res Clin Oncol, 2006. 132(11): p. 709-17.
    118. Ramaiah, S.K. and S. Rittling, Pathophysiological role of osteopontin in hepatic inflammation, toxicity, and cancer. Toxicol Sci, 2008. 103(1): p. 4-13.

    119. Kim, J., et al., Elevated plasma osteopontin levels in patients with hepatocellular carcinoma. Am J Gastroenterol, 2006. 101(9): p. 2051-9.

    120. Leng, J., et al., Cyclooxygenase-2 promotes hepatocellular carcinoma cell growth through Akt activation: evidence for Akt inhibition in celecoxib-induced apoptosis. Hepatology, 2003. 38(3): p. 756-68.

    121. Cervello, M., et al., Correlation between expression of cyclooxygenase-2 and the presence of inflammatory cells in human primary hepatocellular carcinoma: possible role in tumor promotion and angiogenesis. World J Gastroenterol, 2005. 11(30): p. 4638-43.

    122. Camby, I., et al., Galectin-1: a small protein with major functions. Glycobiology, 2006. 16(11): p. 137r-157r.

    123. Nguyen, J., et al., CD45 Modulates Galectin-1-Induced T Cell Death: Regulation by Expression of Core 2 O-Glycans. Journal of immunology (Baltimore, Md. : 1950), 2001. 167: p. 5697-707.

    124. Sundblad, V., et al., Galectin-1: A Jack-of-All-Trades in the Resolution of Acute and Chronic Inflammation. The Journal of Immunology, 2017. 199(11): p. 3721-3730.

    125. Thijssen, V.L., et al., Galectin expression in cancer diagnosis and prognosis: A systematic review. Biochim Biophys Acta, 2015. 1855(2): p. 235-47.

    126. van den Brûle, F.A., D. Waltregny, and V. Castronovo, Increased expression of galectin-1 in carcinoma-associated stroma predicts poor outcome in prostate carcinoma patients. J Pathol, 2001. 193(1): p. 80-7.

    127. Spano, D., et al., Galectin-1 and its involvement in hepatocellular carcinoma aggressiveness. Mol Med, 2010. 16(3-4): p. 102-15.

    128. Wu, H., et al., Overexpression of galectin-1 is associated with poor prognosis in human hepatocellular carcinoma following resection. J Gastroenterol Hepatol, 2012. 27(8): p. 1312-9.

    129. Valach, J., et al., Smooth muscle actin-expressing stromal fibroblasts in head and neck squamous cell carcinoma: increased expression of galectin-1 and induction of poor prognosis factors. Int J Cancer, 2012. 131(11): p. 2499-508.

    130. Chen, J., et al., High expressions of galectin-1 and VEGF are associated with poor prognosis in gastric cancer patients. Tumour Biol, 2014. 35(3): p. 2513-9.
    131. Bektas, S., et al., CD24 and galectin-1 expressions in gastric adenocarcinoma and clinicopathologic significance. Pathol Oncol Res, 2010. 16(4): p. 569-77.

    132. Chong, Y., et al., Galectin-1 from cancer-associated fibroblasts induces epithelial-mesenchymal transition through β1 integrin-mediated upregulation of Gli1 in gastric cancer. J Exp Clin Cancer Res, 2016. 35(1): p. 175.

    133. Goldring, K., et al., The effect of galectin-1 on the differentiation of fibroblasts and myoblasts in vitro. J Cell Sci, 2002. 115(Pt 2): p. 355-66.

    134. Lin, Y.-T., et al., Galectin-1 Accelerates Wound Healing by Regulating the Neuropilin-1/Smad3/NOX4 Pathway and ROS Production in Myofibroblasts. Journal of Investigative Dermatology, 2015. 135(1): p. 258-268.

    135. Lim, M.J., et al., Induction of galectin-1 by TGF-β1 accelerates fibrosis through enhancing nuclear retention of Smad2. Exp Cell Res, 2014. 326(1): p. 125-35.

    136. Jiang, Z.J., et al., Galectin-1 gene silencing inhibits the activation and proliferation but induces the apoptosis of hepatic stellate cells from mice with liver fibrosis. Int J Mol Med, 2019. 43(1): p. 103-116.

    137. Masamune, A., et al., Galectin-1 induces chemokine production and proliferation in pancreatic stellate cells. Am J Physiol Gastrointest Liver Physiol, 2006. 290(4): p. G729-36.

    138. Tang, D., et al., Galectin-1 expression in activated pancreatic satellite cells promotes fibrosis in chronic pancreatitis/pancreatic cancer via the TGF-β1/Smad pathway. Oncol Rep, 2018. 39(3): p. 1347-1355.

    139. Zhu, X., et al., Galectin-1 knockdown in carcinoma-associated fibroblasts inhibits migration and invasion of human MDA-MB-231 breast cancer cells by modulating MMP-9 expression. Acta Biochim Biophys Sin (Shanghai), 2016. 48(5): p. 462-7.

    140. Croci, D.O., et al., Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi's sarcoma. J Exp Med, 2012. 209(11): p. 1985-2000.

    141. Ozawa, K., et al., Regulation of tumor angiogenesis by oxygen-regulated protein 150, an inducible endoplasmic reticulum chaperone. Cancer Res, 2001. 61(10): p. 4206-13.

    142. Hsieh, S.H., et al., Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells. Oncogene, 2008. 27(26): p. 3746-53.

    143. Croci, D.O., et al., Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors. Cell, 2014. 156(4): p. 744-58.

    144. Thijssen, V.L., et al., Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. Proc Natl Acad Sci U S A, 2006. 103(43): p. 15975-80.

    145. Pace, K.E., et al., Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1. J Immunol, 1999. 163(7): p. 3801-11.

    146. Correa, S.G., et al., Opposite effects of galectin-1 on alternative metabolic pathways of L-arginine in resident, inflammatory, and activated macrophages. Glycobiology, 2003. 13(2): p. 119-28.

    147. Barrionuevo, P., et al., A novel function for galectin-1 at the crossroad of innate and adaptive immunity: galectin-1 regulates monocyte/macrophage physiology through a nonapoptotic ERK-dependent pathway. J Immunol, 2007. 178(1): p. 436-45.

    148. Rutkowski, M.R., et al., Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell, 2015. 27(1): p. 27-40.

    149. Stowell, S.R., et al., Galectin-1 induces reversible phosphatidylserine exposure at the plasma membrane. Mol Biol Cell, 2009. 20(5): p. 1408-18.

    150. Ilarregui, J.M., et al., Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nat Immunol, 2009. 10(9): p. 981-91.

    151. Toscano, M.A., et al., Galectin-1 suppresses autoimmune retinal disease by promoting concomitant Th2- and T regulatory-mediated anti-inflammatory responses. J Immunol, 2006. 176(10): p. 6323-32.

    152. Verschuere, T., et al., Glioma-derived galectin-1 regulates innate and adaptive antitumor immunity. Int J Cancer, 2014. 134(4): p. 873-84.

    153. Tian, Y., et al., Autophagy inhibits oxidative stress and tumor suppressors to exert its dual effect on hepatocarcinogenesis. Cell Death Differ, 2015. 22(6): p. 1025-34.

    154. Liu, K., J. Lee, and J.J. Ou, Autophagy and mitophagy in hepatocarcinogenesis. Mol Cell Oncol, 2018. 5(2): p. e1405142.

    155. Mathew, R., V. Karantza-Wadsworth, and E. White, Assessing metabolic stress and autophagy status in epithelial tumors. Methods Enzymol, 2009. 453: p. 53-81.
    156. Li, J., et al., Autophagy promotes hepatocellular carcinoma cell invasion through activation of epithelial–mesenchymal transition. Carcinogenesis, 2013. 34(6): p. 1343-1351.

    157. Huang, F., B.R. Wang, and Y.G. Wang, Role of autophagy in tumorigenesis, metastasis, targeted therapy and drug resistance of hepatocellular carcinoma. World J Gastroenterol, 2018. 24(41): p. 4643-4651.

    158. Xiao, Y., et al., High mobility group box 1 promotes sorafenib resistance in HepG2 cells and in vivo. BMC Cancer, 2017. 17(1): p. 857.

    159. Monteleone, M., J.L. Stow, and K. Schroder, Mechanisms of unconventional secretion of IL-1 family cytokines. Cytokine, 2015. 74(2): p. 213-8.

    160. Dupont, N., et al., Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. Embo j, 2011. 30(23): p. 4701-11.

    161. Ejlerskov, P., et al., Tubulin polymerization-promoting protein (TPPP/p25α) promotes unconventional secretion of α-synuclein through exophagy by impairing autophagosome-lysosome fusion. J Biol Chem, 2013. 288(24): p. 17313-35.

    162. Gordon, P.B. and P.O. Seglen, Prelysosomal convergence of autophagic and endocytic pathways. Biochem Biophys Res Commun, 1988. 151(1): p. 40-7.

    163. Ponpuak, M., et al., Secretory autophagy. Curr Opin Cell Biol, 2015. 35: p. 106-16.
    164. Thomas, J.O. and A.A. Travers, HMG1 and 2, and related 'architectural' DNA-binding proteins. Trends Biochem Sci, 2001. 26(3): p. 167-74.

    165. Tang, D., et al., High-mobility group box 1 and cancer. Biochim Biophys Acta, 2010. 1799(1-2): p. 131-40.

    166. Riuzzi, F., G. Sorci, and R. Donato, The amphoterin (HMGB1)/receptor for advanced glycation end products (RAGE) pair modulates myoblast proliferation, apoptosis, adhesiveness, migration, and invasiveness. Functional inactivation of RAGE in L6 myoblasts results in tumor formation in vivo. J Biol Chem, 2006. 281(12): p. 8242-53.

    167. Conti, L., et al., The noninflammatory role of high mobility group box 1/Toll-like receptor 2 axis in the self-renewal of mammary cancer stem cells. Faseb j, 2013. 27(12): p. 4731-44.

    168. Kim, S., et al., Signaling of high mobility group box 1 (HMGB1) through toll-like receptor 4 in macrophages requires CD14. Mol Med, 2013. 19(1): p. 88-98.

    169. Cheng, B.Q., et al., Serum high mobility group box chromosomal protein 1 is associated with clinicopathologic features in patients with hepatocellular carcinoma. Dig Liver Dis, 2008. 40(6): p. 446-52.

    170. Seglen, P.O. and M.F. Brinchmann, Purification of autophagosomes from rat hepatocytes. Autophagy, 2010. 6(4): p. 542-7.

    171. Correa, S.G., et al., Opposite effects of galectin-1 on alternative metabolic pathways of L-arginine in resident, inflammatory, and activated macrophages. Glycobiology, 2003. 13(2): p. 119-128.

    172. Krautter, F., et al., Characterisation of endogenous Galectin-1 and -9 expression in monocyte and macrophage subsets under resting and inflammatory conditions. Biomedicine & Pharmacotherapy, 2020. 130: p. 110595.

    173. Wu, H., et al., RACK1 promotes the invasive activities and lymph node metastasis of cervical cancer via galectin-1. Cancer Lett, 2020. 469: p. 287-300.

    174. Wu, M.H., et al., Glycosylation-dependent galectin-1/neuropilin-1 interactions promote liver fibrosis through activation of TGF-β- and PDGF-like signals in hepatic stellate cells. Sci Rep, 2017. 7(1): p. 11006.

    175. Tang, D., et al., Pancreatic satellite cells derived galectin-1 increase the progression and less survival of pancreatic ductal adenocarcinoma. PLoS One, 2014. 9(3): p. e90476.

    176. Wu, M.H., et al., Targeting galectin-1 in carcinoma-associated fibroblasts inhibits oral squamous cell carcinoma metastasis by downregulating MCP-1/CCL2 expression. Clin Cancer Res, 2011. 17(6): p. 1306-16.

    177. Wu, M.H., et al., Galectin-1 induces vascular permeability through the neuropilin-1/vascular endothelial growth factor receptor-1 complex. Angiogenesis, 2014. 17(4): p. 839-49.

    178. Croci, D.O., et al., Nurse-like cells control the activity of chronic lymphocytic leukemia B cells via galectin-1. Leukemia, 2013. 27(6): p. 1413-6.

    179. Porębska, N., et al., Galectins as modulators of receptor tyrosine kinases signaling in health and disease. Cytokine & Growth Factor Reviews, 2021.

    180. Tesone, A.J., et al., Satb1 Overexpression Drives Tumor-Promoting Activities in Cancer-Associated Dendritic Cells. Cell Rep, 2016. 14(7): p. 1774-1786.

    181. Palaga, T., W. Wongchana, and P. Kueanjinda, Notch Signaling in Macrophages in the Context of Cancer Immunity. Frontiers in Immunology, 2018. 9: p. 652.
    182. Wu, X., et al., Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis. Nature Communications, 2016. 7(1): p. 10533.

    183. Keewan, E. and S.A. Naser, The Role of Notch Signaling in Macrophages during Inflammation and Infection: Implication in Rheumatoid Arthritis? Cells, 2020. 9(1).

    184. Griffiths, R.E., et al., Maturing reticulocytes internalize plasma membrane in glycophorin A-containing vesicles that fuse with autophagosomes before exocytosis. Blood, 2012. 119(26): p. 6296-306.

    185. Beale, R., et al., A LC3-interacting motif in the influenza A virus M2 protein is required to subvert autophagy and maintain virion stability. Cell Host Microbe, 2014. 15(2): p. 239-47.

    186. DeSelm, C.J., et al., Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev Cell, 2011. 21(5): p. 966-74.

    187. Wesch, N., V. Kirkin, and V.V. Rogov, Atg8-Family Proteins-Structural Features and Molecular Interactions in Autophagy and Beyond. Cells, 2020. 9(9).

    188. Grant, B.D. and J.G. Donaldson, Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol, 2009. 10(9): p. 597-608.

    189. Eitan, E., et al., Impact of lysosome status on extracellular vesicle content and release. Ageing Res Rev, 2016. 32: p. 65-74.

    190. Fader, C.M. and M.I. Colombo, Autophagy and multivesicular bodies: two closely related partners. Cell Death & Differentiation, 2009. 16(1): p. 70-78.

    191. Doyle, L.M. and M.Z. Wang, Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells, 2019. 8(7).

    192. Piper, R.C. and D.J. Katzmann, Biogenesis and function of multivesicular bodies. Annu Rev Cell Dev Biol, 2007. 23: p. 519-47.

    193. Villarroya-Beltri, C., et al., ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat Commun, 2016. 7: p. 13588.

    194. Bonifacino, J.S. and B.S. Glick, The mechanisms of vesicle budding and fusion. Cell, 2004. 116(2): p. 153-66.

    195. Fader, C.M., et al., TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim Biophys Acta, 2009. 1793(12): p. 1901-16.
    196. Blanc, L. and M. Vidal, New insights into the function of Rab GTPases in the context of exosomal secretion. Small GTPases, 2018. 9(1-2): p. 95-106.

    197. Hsu, C., et al., Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol, 2010. 189(2): p. 223-32.

    198. Teng, F. and M. Fussenegger, Shedding Light on Extracellular Vesicle Biogenesis and Bioengineering. Advanced Science, 2021. 8: p. 2003505.

    199. Ambrosio, A.L., J.A. Boyle, and S.M. Di Pietro, Mechanism of platelet dense granule biogenesis: study of cargo transport and function of Rab32 and Rab38 in a model system. Blood, 2012. 120(19): p. 4072-81.

    200. Bultema, J.J., et al., BLOC-2, AP-3, and AP-1 proteins function in concert with Rab38 and Rab32 proteins to mediate protein trafficking to lysosome-related organelles. J Biol Chem, 2012. 287(23): p. 19550-63.

    201. Fukuda, M., Rab27 effectors, pleiotropic regulators in secretory pathways. Traffic, 2013. 14(9): p. 949-63.

    202. Hessvik, N.P. and A. Llorente, Current knowledge on exosome biogenesis and release. Cell Mol Life Sci, 2018. 75(2): p. 193-208.

    203. Cho, S.-H., et al., Rab37 mediates exocytosis of secreted frizzled-related protein 1 to inhibit Wnt signaling and thus suppress lung cancer stemness. Cell Death & Disease, 2018. 9(9): p. 868.

    204. Tzeng, H.T., et al., Rab37 in lung cancer mediates exocytosis of soluble ST2 and thus skews macrophages toward tumor-suppressing phenotype. Int J Cancer, 2018. 143(7): p. 1753-1763.

    205. Chen, Y.-D., et al., Exophagy of annexin A2 via RAB11, RAB8A and RAB27A in IFN-γ-stimulated lung epithelial cells. Scientific Reports, 2017. 7(1): p. 5676.

    206. Ungar, D. and F. Hughson, SNARE protein structure and function. Annual review of cell and developmental biology, 2003. 19: p. 493-517.

    207. Aoyagi, K., et al., VAMP7 Regulates Autophagy to Maintain Mitochondrial Homeostasis and to Control Insulin Secretion in Pancreatic β-Cells. Diabetes, 2016. 65(6): p. 1648-1659.

    208. Wojnacki, J., et al., Role of VAMP7-Dependent Secretion of Reticulon 3 in Neurite Growth. Cell Reports, 2020. 33(12): p. 108536.

    209. Kandachar, V., et al., An interaction network between the SNARE VAMP7 and Rab GTPases within a ciliary membrane-targeting complex. J Cell Sci, 2018. 131(24).

    210. Wang, P., et al., Characterization of VAMP-2 in the lung: implication in lung surfactant secretion. Cell Biol Int, 2012. 36(9): p. 785-91.

    211. Polgár, J., S.H. Chung, and G.L. Reed, Vesicle-associated membrane protein 3 (VAMP-3) and VAMP-8 are present in human platelets and are required for granule secretion. Blood, 2002. 100(3): p. 1081-3.

    212. Ferlito, M., et al., VAMP-1, VAMP-2, and syntaxin-4 regulate ANP release from cardiac myocytes. J Mol Cell Cardiol, 2010. 49(5): p. 791-800.

    213. Jeong, S.J., et al., p62/SQSTM1 and Selective Autophagy in Cardiometabolic Diseases. Antioxid Redox Signal, 2019. 31(6): p. 458-471.

    214. Gerstenmaier, L., et al., The autophagic machinery ensures nonlytic transmission of mycobacteria. Proc Natl Acad Sci U S A, 2015. 112(7): p. E687-92.

    215. Geisler, S., et al., The ubiquitin-conjugating enzymes UBE2N, UBE2L3 and UBE2D2/3 are essential for Parkin-dependent mitophagy. J Cell Sci, 2014. 127(Pt 15): p. 3280-93.
    216. Kim, B.-W., et al., Structural basis for recognition of autophagic receptor NDP52 by the sugar receptor galectin-8. Nature Communications, 2013. 4(1): p. 1613.

    217. van Dalen, F.J., et al., Molecular Repolarisation of Tumour-Associated Macrophages. Molecules, 2018. 24(1).

    218. Zhang, Y., et al., ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res, 2013. 23(7): p. 898-914.

    219. Shiau, D.-J., et al., Hepatocellular carcinoma-derived high mobility group box 1 triggers M2 macrophage polarization via a TLR2/NOX2/autophagy axis. Scientific Reports, 2020. 10(1): p. 13582.

    220. Xu, Q., et al., NADPH Oxidases Are Essential for Macrophage Differentiation. J Biol Chem, 2016. 291(38): p. 20030-41.

    221. Zhang, J., et al., Tumoral NOX4 recruits M2 tumor-associated macrophages via ROS/PI3K signaling-dependent various cytokine production to promote NSCLC growth. Redox Biology, 2019. 22: p. 101116.

    222. Kim, S. and M. Karin, Role of TLR2-dependent inflammation in metastatic progression. Ann N Y Acad Sci, 2011. 1217: p. 191-206.
    223. Chang, C.P., et al., TLR2-dependent selective autophagy regulates NF-κB lysosomal degradation in hepatoma-derived M2 macrophage differentiation. Cell Death Differ, 2013. 20(3): p. 515-23.

    224. Tsolmongyn, B., et al., A Toll-like receptor 2 ligand, Pam3CSK4, augments interferon-γ-induced nitric oxide production via a physical association between MyD88 and interferon-γ receptor in vascular endothelial cells. Immunology, 2013. 140(3): p. 352-61.

    225. Zhang, J., et al., ROS and ROS-Mediated Cellular Signaling. Oxid Med Cell Longev, 2016. 2016: p. 4350965.

    226. Gao, T., et al., TLR3 contributes to persistent autophagy and heart failure in mice after myocardial infarction. J Cell Mol Med, 2018. 22(1): p. 395-408.

    227. Abels, E.R. and X.O. Breakefield, Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cell Mol Neurobiol, 2016. 36(3): p. 301-12.

    228. Guo, H., et al., Atg5 Disassociates the V(1)V(0)-ATPase to Promote Exosome Production and Tumor Metastasis Independent of Canonical Macroautophagy. Dev Cell, 2017. 43(6): p. 716-730.e7.

    229. Leung, Z., et al., Galectin-1 promotes hepatocellular carcinoma and the combined therapeutic effect of OTX008 galectin-1 inhibitor and sorafenib in tumor cells. J Exp Clin Cancer Res, 2019. 38(1): p. 423.

    230. Zhu, H., et al., Predictive role of galectin-1 and integrin α5β1 in cisplatin-based neoadjuvant chemotherapy of bulky squamous cervical cancer. Biosci Rep, 2017. 37(5).
    231. Wang, X., et al., The Role of HMGB1 Signaling Pathway in the Development and Progression of Hepatocellular Carcinoma: A Review. Int J Mol Sci, 2015. 16(9): p. 22527-40.

    232. Yang, H., et al., The many faces of HMGB1: molecular structure-functional activity in inflammation, apoptosis, and chemotaxis. J Leukoc Biol, 2013. 93(6): p. 865-73.

    233. Gardella, S., et al., The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep, 2002. 3(10): p. 995-1001.

    234. Kostova, N., et al., The expression of HMGB1 protein and its receptor RAGE in human malignant tumors. Mol Cell Biochem, 2010. 337(1-2): p. 251-8.

    235. Tang, D., et al., High-mobility group box 1 is essential for mitochondrial quality control. Cell Metab, 2011. 13(6): p. 701-11.
    236. Kang, R., et al., Metabolic regulation by HMGB1-mediated autophagy and mitophagy. Autophagy, 2011. 7(10): p. 1256-8.

    237. Tang, D., et al., Endogenous HMGB1 regulates autophagy. J Cell Biol, 2010. 190(5): p. 881-92.

    238. Zhang, Q.Y., et al., Autophagy-mediated HMGB1 release promotes gastric cancer cell survival via RAGE activation of extracellular signal-regulated kinases 1/2. Oncol Rep, 2015. 33(4): p. 1630-8.

    239. Chen, T., et al., Heat shock protein 70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 pathway. J Immunol, 2009. 182(3): p. 1449-59.

    240. Kim, S., et al., Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature, 2009. 457(7225): p. 102-6.

    241. Chalmin, F., et al., Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest, 2010. 120(2): p. 457-71.

    242. Yang, C.S., et al., NADPH oxidase 2 interaction with TLR2 is required for efficient innate immune responses to mycobacteria via cathelicidin expression. J Immunol, 2009. 182(6): p. 3696-705.

    243. Lim, H., D. Kim, and S.J. Lee, Toll-like receptor 2 mediates peripheral nerve injury-induced NADPH oxidase 2 expression in spinal cord microglia. J Biol Chem, 2013. 288(11): p. 7572-7579.

    244. Schuett, J., et al., NADPH oxidase NOX2 mediates TLR2/6-dependent release of GM-CSF from endothelial cells. Faseb j, 2017. 31(6): p. 2612-2624.

    245. Lee, I.T., et al., Lipoteichoic Acid Induces HO-1 Expression via the TLR2/MyD88/c-Src/NADPH Oxidase Pathway and Nrf2 in Human Tracheal Smooth Muscle Cells. The Journal of Immunology, 2008. 181(7): p. 5098.

    246. Rizk, N.I., et al., HMGB1 and SEPP1 as predictors of hepatocellular carcinoma in patients with viral C hepatitis: Effect of DAAs. Clin Biochem, 2019. 70: p. 8-13.

    247. Zhu, J., et al., Prognostic significance of combining high mobility group Box-1 and OV-6 expression in hepatocellular carcinoma. Sci China Life Sci, 2018. 61(8): p. 912-923.

    下載圖示 校內:2023-08-09公開
    校外:2023-08-09公開
    QR CODE