研究生: |
張曼妤 Chang, Man-Yu |
---|---|
論文名稱: |
共濺鍍法研製氧化銦鋯薄膜電晶體及光電應用 Fabrication of Indium-Zirconium-Oxide Thin Film Transistors by Co-Sputtering and Optoelectronic Applications |
指導教授: |
張守進
Chang, Shoou-Jinn |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 84 |
中文關鍵詞: | 薄膜電晶體;紫外光檢測器;雙通道電晶體 |
外文關鍵詞: | thin film transistors, photosensors, dual channel TFTs |
相關次數: | 點閱:91 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此篇碩論中,以氧化銦及氧化鋯兩種靶材共同濺鍍,研製出以氧化銦鋯為主動層之薄膜電晶體及紫外光電晶體。將濺鍍完成的薄膜以X-ray diffraction 及Atomic Force Microscope 加以分析,得知我們的薄膜表面平整性高且呈現多晶相結構,利於電晶體載子遷移率的提升。紫外光檢測器的部分,我們先在玻璃基板上鍍上氧化銦鋯薄膜,並使用鉑作為歐姆接觸電極。我們發現能夠以調變薄膜中氧化銦靶材的濺鍍功率,進而改變光檢測器分別所能吸收到的光截止波長及光響應強度。
碩論的第二部分,著重在氧化銦鋯薄膜電晶體的分析。我們調變其中氧化銦靶材的濺鍍功率而改變其在薄膜中所占的含量,進而做出Sample A–I 等9種試片,分析得到Sample F擁有最好特性。其次臨界擺幅為0.43 (V/decade)、場效載子遷移率為50.78 (cm2V−1s−1)而電流開關比達到9.98×105。紫外光電晶體的部分,利用250-Watt Xenon lamp照射光波長230–500 nm,隨著薄膜中氧化銦含量上升,截止波長由310 nm上升到340 nm,其中Sample F的光響應及拒斥比分別為1.05 (A/W)及2.2×104。
最後,我們研製了雙主動層通道的薄膜電晶體,利用上述Sample C作為Front channel,Sample D–F作為Back channel,得到全新的Sample J、K、L。其中Sample L展現最佳的電特性,次臨界擺幅降低至0.33 (V/decade)、場效載子遷移率和電流開關比提高到58.16 (cm2V−1s−1)及3.02×106。紫外光電晶體的部分,截止波長上升至325 nm–360 nm,光響應和拒斥比則為1.73 (A/W)及3.2×102。
In my experiment, I use the both targets of indium oxide and zirconium dioxide to co-sputter to fabricate the In-Zr-O thin film transistors and UV phototransistors. The In-Zr-O thin film is analyzed by X-ray diffraction and atomic force microscope and we found that it is crystalline structure and has smooth surface which are beneficial to enhance the TFTs’ characteristics. And then, the In-Zr-O MSM UV photodetectors with Pt ohmic contact electrodes are realized. It is found that changing the RF sputtering power for indium oxide target will transform the cut off wavelength and conductivity of the photodetectors.
Next, it will focus on the investigation of the In-Zr-O thin film transistors. We change the content of In2O3 in the thin film in order to fabricate Sample A to Sample I and it is found that Sample F owns good electrical property with SS of 0.43 (V/decade), μFE of 50.78 (cm2V−1s−1) and Ion/off of 9.98×105. Furthermore, using 250-Watt Xenon lamp to emit 230–500 nm light will modulate the cut off wavelength of the UV phototransistors from 310 nm to 340 nm as the content of In2O3 is rising. The photoresponsivity and UV-to-visible rejection ratio of the phototransistors for Sample F are 1.05 (A/W) and 2.2×104.
Finally, we fabricate bilayer In-Zr-O thin film transistors with double channel which is composed of Sample C as front channel and Sample D–F as back channel and we call them Sample J, K and L. Sample L shows better property with SS of 0.33 (V/decade), μFE of 58.16 (cm2V−1s−1) and Ion/off of 3.02×106. Compared with the TFTs with single layer structure, the physical characteristics of the TFTs with bilayer structure is enhanced. The cut off wavelength of the UV phototransistors rises to 325 nm–360 nm and the photoresponsivity and UV-to-visible rejection ratio of Sample L are 1.73 (A/W) and 3.2×102.
[1] E. Fortunato, P. Barquinha, and R. Martins, "Oxide semiconductor thin-film transistors: A review of recent advances," Advanced Materials, vol. 24, pp. 2945-2986, Jun 2012.
[2] S. Yamazaki, 'New crystalline structure yields reliable thin-film transistors,' SPIE Newsroom, September 2012.
[3] G. R. Chaji and A. Nathan, "A current-mode comparator for digital calibration of amorphous silicon AMOLED displays," IEEE Transactions on Circuits and Systems Ii-Express Briefs, vol. 55, pp. 614-618, Jul 2008.
[4] J. T. Lin and K. D. Huang, "A high-performance polysilicon thin-film transistor built on a trenched body," IEEE Transactions on Electron Devices, vol. 55, pp. 2417-2422, Sep 2008.
[5] S. H. Kim, W. M. Yoon, M. Jang, H. Yang, J. J. Park, and C. E. Park, "Damage-free hybrid encapsulation of organic field-effect transistors to reduce environmental instability," Journal of Materials Chemistry, vol. 22, pp. 7731-7738, 2012.
[6] H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, "High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer," Applied Physics Letters, vol. 86, p. 3, Jan 2005.
[7] P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes, "Transparent ZnO thin-film transistor fabricated by RF magnetron sputtering," Applied Physics Letters, vol. 82, pp. 1117-1119, Feb 2003.
[8] R. E. Proano, R. S. Misage, D. Jones, and D. G. Ast, "Guest-host active matrix liquid-crystal display using high-voltage polysilicon thin- film transistors," IEEE Transactions on Electron Devices, vol. 38, pp. 1781-1786, Aug 1991.
[9] M.-K. Han, J.-H. Lee, K.-S. Shin, and J.-H. Park, "Experimental study of the hysteresis in hydrogenated amorphous silicon thin-film transistors for an active matrix organic light-emitting diode," Journal of the Korean Physical Society, vol. 48, pp. 76-79, 2006.
[10] T. Kamiya and H. Hosono, "Material characteristics and applications of transparent amorphous oxide semiconductors," Npg Asia Materials, vol. 2, pp. 15-22, Jan 2010.
[11] K. H. Lee, J. S. Jung, K. S. Son, J. S. Park, T. S. Kim, R. Choi, et al., "The effect of moisture on the photon-enhanced negative bias thermal instability in Ga-In-Zn-O thin film transistors," Applied Physics Letters, vol. 95, p. 3, Dec 2009.
[12] J. Lee, J. S. Park, Y. S. Pyo, D. B. Lee, E. H. Kim, D. Stryakhilev, et al., "The influence of the gate dielectrics on threshold voltage instability in amorphous Indium-Gallium-Zinc oxide thin film transistors," Applied Physics Letters, vol. 95, p. 3, Sep 2009.
[13] J. K. Yao, N. S. Xu, S. Z. Deng, J. Chen, J. C. She, H. P. D. Shieh, et al., "Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy," IEEE Transactions on Electron Devices, vol. 58, pp. 1121-1126, Apr 2011.
[14] B. Ryu, H. K. Noh, E. A. Choi, and K. J. Chang, "O-vacancy as the origin of negative bias illumination stress instability in amorphous In-Ga-Zn-O thin film transistors," Applied Physics Letters, vol. 97, p. 3, Jul 2010.
[15] A. Suresh and J. F. Muth, "Bias stress stability of Indium Gallium Zinc oxide channel based transparent thin film transistors," Applied Physics Letters, vol. 92, p. 3, Jan 2008.
[16] J. K. Jeong, H. W. Yang, J. H. Jeong, Y. G. Mo, and H. D. Kim, "Origin of threshold voltage instability in Indium-Gallium-Zinc oxide thin film transistors," Applied Physics Letters, vol. 93, p. 3, Sep 2008.
[17] K. Park, H. W. Park, H. S. Shin, J. Bae, K. S. Park, I. Kang, et al., "Reliability of crystalline Indium-Gallium-Zinc-Oxide thin-film transistors under bias stress with light illumination," IEEE Transactions on Electron Devices, vol. 62, pp. 2900-2905, Sep 2015.
[18] S. Yamazaki, H. Suzawa, K. Inoue, K. Kato, T. Hirohashi, K. Okazaki, et al., "Properties of crystalline In-Ga-Zn-Oxide semiconductor and its transistor characteristics," Japanese Journal of Applied Physics, vol. 53, p. 10, Apr 2014.
[19] C. Y. Chung, B. Zhu, R. G. Greene, M. O. Thompson, and D. G. Ast, "High mobility, dual layer, c-axis aligned crystalline/amorphous IGZO thin film transistor," Applied Physics Letters, vol. 107, p. 5, Nov 2015.
[20] I. S. Jeong, J. H. Kim, and S. Im, "Ultraviolet-enhanced photodiode employing n-ZnO/p-Si structure," Applied Physics Letters, vol. 83, pp. 2946-2948, Oct 2003.
[21] C. Pernot, A. Hirano, M. Iwaya, T. Detchprohm, H. Amano, and I. Akasaki, "Solar-blind UV photodetectors based on GaN/AlGaN p-i-n photodiodes," Japanese Journal of Applied Physics Part 2-Letters, vol. 39, pp. L387-L389, May 2000.
[22] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, "ZnO Schottky ultraviolet photodetectors," Journal of Crystal Growth, vol. 225, pp. 110-113, May 2001.
[23] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, et al., "GaN metal-semiconductor-metal ultraviolet photodetectors with transparent Indium-Tin-Oxide Schottky contacts," IEEE Photonics Technology Letters, vol. 13, pp. 848-850, Aug 2001.
[24] H. J. Nam, J. Cha, S. H. Lee, W. J. Yoo, and D. Y. Jung, "A new mussel-inspired polydopamine phototransistor with high photosensitivity: signal amplification and light-controlled switching properties," Chemical Communications, vol. 50, pp. 1458-1461, 2014.
[25] Y. Huang and R. I. Hornsey, "Current-mode CMOS image sensor using lateral bipolar phototransistors," IEEE Transactions on Electron Devices, vol. 50, pp. 2570-2573, Dec 2003.
[26] X. H. Liu, G. F. Dong, L. Duan, L. D. Wang, and Y. Qiu, "High performance low-voltage organic phototransistors: interface modification and the tuning of electrical, photosensitive and memory properties," Journal of Materials Chemistry, vol. 22, pp. 11836-11842, 2012.
[27] T. H. Chang, C. J. Chiu, W. Y. Weng, S. J. Chang, T. Y. Tsai, and Z. D. Huang, "High responsivity of amorphous Indium Gallium Zinc oxide phototransistor with Ta2O5 gate dielectric," Applied Physics Letters, vol. 101, p. 3, Dec 2012.
[28] H. Hosono, "Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application," Journal of Non-Crystalline Solids, vol. 352, pp. 851-858, Jun 2006.
[29] C. Giuri, M. R. Perrone, and V. Piccinno, "Output coupler design of unstable cavities for excimer lasers," Applied Optics, vol. 36, pp. 1143-1148, Feb 1997.
[30] M. F. Al-Kuhaili, "Optical properties of Hafnium oxide thin films and their application in energy-efficient windows," Optical Materials, vol. 27, pp. 383-387, Dec 2004.
[31] J. Lu, Y. Kuo, J. Yan, and C. H. Lin, "Nanocrystalline silicon embedded Zirconium-doped hafnium oxide high-k memory device," Japanese Journal of Applied Physics Part 2-Letters & Express Letters, vol. 45, pp. L901-L903, Sep 2006.
[32] J. P. Chang, Y. S. Lin, and K. Chu, "Rapid thermal chemical vapor deposition of zirconium oxide for metal-oxide-semiconductor field effect transistor application," Journal of Vacuum Science & Technology B, vol. 19, pp. 1782-1787, Sep-Oct 2001.
[33] B. S. Yang, M. S. Huh, S. Oh, U. S. Lee, Y. J. Kim, M. S. Oh, et al., "Role of ZrO2 incorporation in the suppression of negative bias illumination-induced instability in Zn-Sn-O thin film transistors," Applied Physics Letters, vol. 98, p. 3, Mar 2011.
[34] S. Aikawa, T. Nabatame, and K. Tsukagoshi, "Effects of dopants in InOx-based amorphous oxide semiconductors for thin-film transistor applications," Applied Physics Letters, vol. 103, p. 5, Oct 2013.
[35] Y. G. Kim, T. Kim, C. Avis, S. H. Lee, and J. Jang, "Stable and high-performance indium oxide thin-film transistor by Ga doping," IEEE Transactions on Electron Devices, vol. 63, pp. 1078-1084, Mar 2016.
[36] N. Mitoma, S. Aikawa, X. Gao, T. Kizu, M. Shimizu, M. F. Lin, et al., "Stable amorphous In2O3-based thin-film transistors by incorporating SiO2 to suppress oxygen vacancies," Applied Physics Letters, vol. 104, p. 5, Mar 2014.
[37] X. Xu, L. T. Zhang, Y. Shao, Z. Y. Chen, Y. Le, and S. D. Zhang, "Amorphous Indium Tin oxide thin-film transistors fabricated by cosputtering technique," IEEE Transactions on Electron Devices, vol. 63, pp. 1072-1077, Mar 2016.
[38] J. S. Park, K. Kim, Y. G. Park, Y. G. Mo, H. D. Kim, and J. K. Jeong, "Novel ZrInZnO thin-film transistor with excellent stability," Advanced Materials, vol. 21, pp. 329-333, Jan 2009.
[39] D. A. Neamen, Semiconductor physics and devices: Basic principles 4th ed, McGraw-Hill, 2012.
[40] T. Osada, K. Akimoto, T. Sato, M. Ikeda, M. Tsubuku, J. Sakata, et al., "Development of liquid crystal display panel integrated with drivers using amorphous In-Ga-Zn-Oxide thin film transistors," Japanese Journal of Applied Physics, vol. 49, p. 4, 2010.
[41] S. B. Ben Streetman, Solid state electronic devices (6th edition), Pearson Prentice Hall, 2005.
[42] W. Mai, 'Fundamental theory of atomic force microscopy,' available at: http://www.nanoscience.gatech.edu/zlwang/research/afm.html.
[43] S. Ray and A. G. Shard, "Quantitative analysis of adsorbed proteins by x-ray photoelectron spectroscopy," Analytical Chemistry, vol. 83, pp. 8659-8666, Nov 2011.
[44] E. Monroy, F. Calle, J. L. Pau, E. Munoz, F. Omnes, B. Beaumont, et al., "AlGaN-based UV photodetectors," Journal of Crystal Growth, vol. 230, pp. 537-543, Sep 2001.
[45] W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, "A beta-Ga2O3/GaN hetero-structured solar-blind and visible-blind dual-band photodetector," IEEE Sensors Journal, vol. 11, pp. 1491-1492, Jun 2011.
[46] J. Tauc, Grigorov.R, and A. Vancu, "Optical properties and electronic structure of amorphous Germanium," Journal of the Physical Society of Japan, vol. S 21, pp. 123-&, 1966.
[47] B. M. Rajbongshi and S. K. Samdarshi, "ZnO and Co-ZnO nanorods-complementary role of oxygen vacancy in photocatalytic activity of under UV and visible radiation flux," Materials Science and Engineering B-Advanced Functional Solid-State Materials, vol. 182, pp. 21-28, Mar 2014.
[48] N. S. Liu, G. J. Fang, W. Zeng, H. Zhou, F. Cheng, Q. A. Zheng, et al., "Direct growth of lateral ZnO nanorod UV photodetectors with schottky contact by a single-step hydrothermal reaction," Acs Applied Materials & Interfaces, vol. 2, pp. 1973-1979, Jul 2010.
[49] J. Reemts and A. Kittel, "Persistent photoconductivity in highly porous ZnO films," Journal of Applied Physics, vol. 101, p. 5, Jan 2007.
[50] S. Lany and A. Zunger, "Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors," Physical Review B, vol. 72, p. 13, Jul 2005.
[51] C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen, et al., "High photocurrent gain in SnO(2) nanowires," Applied Physics Letters, vol. 93, p. 3, Sep 2008.
[52] F. Yakuphanoglu and S. Mansouri, "Photosensitivity n-channel ZnO phototransistor for optoelectronic applications: Modeling of ZnO TFT," Microelectronics Reliability, vol. 51, pp. 2200-2204, Dec 2011.
[53] M. K. Ryu, S. Yang, S. H. K. Park, C. S. Hwang, and J. K. Jeong, "High performance thin film transistor with cosputtered amorphous Zn-In-Sn-O channel: Combinatorial approach," Applied Physics Letters, vol. 95, p. 3, Aug 2009.
[54] Y. Jeong, K. Song, T. Jun, S. Jeong, and J. Moon, "Effect of gallium content on bias stress stability of solution-deposited Ga-Sn-Zn-O semiconductor transistors," Thin Solid Films, vol. 519, pp. 6164-6168, Jul 2011.
[55] S. Park, S. Park, S. E. Ahn, I. Song, W. Chae, M. Han, et al., "Effects of operational and geometrical conditions upon photosensitivity of amorphous InZnO thin film transistors," Journal of Vacuum Science & Technology B, vol. 31, p. 5, Sep 2013.
[56] H. J. Kim, B. G. Son, C. K. Lee, S. Y. Je, J. Y. Won, and J. K. Jeong, "Effect of nitrous oxide high pressure annealing on the performance of low temperature, soluble-based IZO transistors," IEEE Electron Device Letters, vol. 35, pp. 455-457, Apr 2014.
[57] J. Raja, K. Jang, N. Balaji, S. Q. Hussain, S. Velumani, S. Chatterjee, et al., "Aging effects on the stability of nitrogen-doped, and un-doped InGaZnO thin-film transistors," Materials Science in Semiconductor Processing, vol. 37, pp. 129-134, Sep 2015.
[58] S. Fadida, F. Palumbo, L. Nyns, D. Lin, S. Van Elshocht, M. Caymax, et al., "Hf-based high-k dielectrics for p-Ge MOS gate stacks," Journal of Vacuum Science & Technology B, vol. 32, p. 7, May 2014.
[59] C. R. Park and J. H. Hwang, "Effect of double-layered Al2O3/SiO2 dielectric materials on In-Ga-Zn-O (IGZO)-based amorphous transparent thin film transistors," Ceramics International, vol. 40, pp. 12917-12922, Sep 2014.
[60] H. Wang, Y. B. Xiao, Z. F. Chen, W. Y. Xu, M. Z. Long, and J. B. Xu, "Solution-processed PCDTBT capped low-voltage InGaZnOx thin film phototransistors for visible-light detection," Applied Physics Letters, vol. 106, p. 5, Jun 2015.
[61] H. Y. Jung, Y. Kang, A. Y. Hwang, C. K. Lee, S. Han, D. H. Kim, et al., "Origin of the improved mobility and photo-bias stability in a double-channel metal oxide transistor," Scientific Reports, vol. 4, p. 8, Jan 2014.
[62] J. C. Park, S. Kim, S. Kim, C. Kim, I. Song, Y. Park, et al., "Highly stable transparent amorphous oxide semiconductor thin-film transistors having double-stacked active layers," Advanced Materials, vol. 22, pp. 5512-5516, Dec 2010.
[63] Y. J. Chung, U. K. Kim, E. S. Hwang, and C. S. Hwang, "Indium tin oxide/InGaZnO bilayer stacks for enhanced mobility and optical stability in amorphous oxide thin film transistors," Applied Physics Letters, vol. 105, p. 5, Jul 2014.
[64] X. G. Yu, N. J. Zhou, J. Smith, H. Lin, K. Stallings, J. S. Yu, et al., "Synergistic approach to high-performance oxide thin film transistors using a bilayer channel architecture," ACS Applied Materials & Interfaces, vol. 5, pp. 7983-7988, Aug 2013.
[65] B. Cho, J. Lee, H. Seo, and H. Jeon, "Electrical stability enhancement of the amorphous In-Ga-Zn-O thin film transistor by formation of Au nanoparticles on the back-channel surface," Applied Physics Letters, vol. 102, p. 4, Mar 2013.