| 研究生: |
李秀玲 Lee, Xiu-Ling |
|---|---|
| 論文名稱: |
在製程微量變動下模糊指數加權移動平均管制圖之建構與研究 Developing a New Fuzzy Exponentially Weight Moving Average Control Chart for Small Sustained Process Shifts |
| 指導教授: |
潘浙楠
Pan, Jeh-Nan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 31 |
| 中文關鍵詞: | 模糊EWMA管制圖 、平均連串長度 、模糊平均連串長度 |
| 外文關鍵詞: | fuzzy EWMA control chart, average run length, fuzzy average run length |
| 相關次數: | 點閱:115 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現今工業界中,統計製程管制(statistical process control, SPC)是常用來及時監控及改善產品及製程品質的一種統計技術,其中又以管制圖(control chart)為統計製程管制技術中最廣泛被使用於監控製程品質之工具。然而在實際的應用中,往往因為操作人員、量測工具、製程環境等因素存在著不確定性,導致量測數據為不確定的模糊數而無法使用過去傳統的方式來建構管制圖。
近年來已有多位學者針對量測數據為模糊數提出了一系列的模糊管制圖,彼等運用解模糊化的方法建立明確管制界線並以其作為製程是否是管制狀態之依據。但此種方法並未考慮到數據的模糊性而失去部分訊息,因此考慮量測數據的模糊程度用以建立模糊管制界限確實有其必要性。
本研究利用Buckley(1985)所提出的模糊數相近關係測度來決定模糊統計量與模糊管制界線的大小關係並以其作為製程是否呈管制狀態之評判依據,接著我們根據模糊隸屬度的概念提出新的模糊ARL計算公式並透過其找尋在各種不同模糊程度下的修正管制界線的參數。實務工作者可透過修正管制界線參數在管制狀態內的ARL值( )決定其所能接受量測數據的模糊程度,再以此管制參數建構模糊EWMA管制圖。
最後本研究以Montgomery (2009, pp. 283)所提供的矽晶圓氧化層厚度量測資料說明模糊EWMA管制圖的使用步驟,可作為實務工作者的參考。
This research aims to develop a new fuzzy exponentially weighted moving average (EWMA) control chart for monitoring the process when the measurement data are fuzzy numbers. In this research, based on the fuzzy measures proposed by Buckley (1985), we construct a fuzzy control chart with different degrees of membership to monitor the manufacturing process. Then, a new fuzzy average run length (fuzzy ARL) is developed to evaluate the detecting performance of our purposed fuzzy control chart. It can be used as the basis for obtaining the parameters of adjusted control limits. Finally, a numerical example with fuzzy measurement data is used to demonstrate the usefulness of our purposed fuzzy control chart. Moreover, a standard operating procedures (SOP) is setup accordingly. Hopefully, it may serve as a useful guideline for quality practitioners when monitoring and control the process quality when the measurement data are indeterminate fuzzy numbers.
1. Buckley, J. J., “Fuzzy hierarchical analysis.” Fuzzy sets and systems, 17(3), 233-247. (1985)
2. Crowder, S. V., “A simple method for studying run–length distributions of exponentially weighted moving average charts.” Technometrics, 29(4), 401-407. (1987)
3. Cheng, C. B., “Fuzzy process control: construction of control charts with fuzzy numbers.” Fuzzy sets and systems, 154(2), 287-303. (2005)
4. Erginel, N., “Fuzzy individual and moving range control charts with α-cuts.” Journal of Intelligent & Fuzzy Systems, 19(4, 5), 373-383. (2008)
5. Gülbay, M., Kahraman, C. and Ruan, D., “α‐Cut fuzzy control charts for linguistic data.” International Journal of Intelligent Systems, 19(12), 1173-1195. (2004)
6. Gülbay, M. and Kahraman, C., “An alternative approach to fuzzy control charts: Direct fuzzy approach.” Information sciences, 177(6), 1463-1480. (2007)
7. Kanagawa, A., Tamaki, F. and Ohta, H., “Control charts for process average and variability based on linguistic data.” The International Journal of Production Research, 31(4), 913-922. (1993)
8. Kahraman, C. and Kabak, Ö. (Eds.), Fuzzy Statistical Decision-Making: Theory and Applications (Vol. 343), Springer, Turkey. (2016)
9. Lucas, J. M. and Saccucci, M. S., “Exponentially weighted moving average control schemes: properties and enhancements.” Technometrics, 32(1), 1-12. (1990)
10. Montgomery, D. C., Introduction to Statistical Quality Control, 6^th Ed., Wiley, New York. (2009)
11. Moghadam, G., Ardali, G. and Amirzadeh, V., “New fuzzy EWMA control charts for monitoring phase II fuzzy profiles.” Decision Science Letters, 5(1), 119-128. (2016)
12. Page, E. S., “Cumulative sum charts.” Technometrics, 3(1), 1-9. (1961)
13. Roberts, S. W., “Control chart tests based on geometric moving averages.” Technometrics, 1(3), 239-250. (1959)
14. Raz, T. and Wang, J. H., “Probabilistic and membership approaches in the construction of control charts for linguistic data.” Production Planning & Control, 1(3), 147-157. (1990)
15. Senturk, S. and Erginel, N., “Development of fuzzy and control charts using α-cuts.” Information Sciences, 179(10), 1542-1551. (2009)
16. Sentürk, S., “Fuzzy regression control chart based on α-cut approximation.” International Journal of Computational Intelligence Systems, 3(1), 123-140. (2010)
17. Şentürk, S., Erginel, N., Kaya, İ. and Kahraman, C., “Design of Fuzzy ũ Control Charts.” Journal of Multiple-Valued Logic & Soft Computing, 17(5–6), 459-473. (2011)
18. Şentürk, S., Erginel, N., Kaya, İ. and Kahraman, C., “Fuzzy exponentially weighted moving average control chart for univariate data with a real case application.” Applied Soft Computing, 22, 1-10. (2014)
19. Sogandi, F., Mousavi, S. M. and Ghanaatiyan, R., “An extension of fuzzy P-control chart based on -level fuzzy midrange.” Advanced Computational Techniques in Electromagnetics, Volume 2014, 1-8. (2014)
20. Wang, J. H. and Raz, T., “On the construction of control charts using linguistic variables.” The International Journal of Production Research, 28(3), 477-487. (1990)
21. Zadeh, L. A., “Probability measures of fuzzy events.” Journal of mathematical analysis and applications, 23(2), 421-427. (1968)
22. Zabihinpour, S. M., Ariffin, M. K. A., Tang, S. H. and Boyer, A. A. O., “Fuzzy mean and range control charts for monitoring fuzzy quality characteristics: A case study in food industries using chicken nugget.” In Industrial Engineering and Engineering Management (IEEM), 2014 IEEE International Conference on, 759-763. (2014)
23. Zavvar Sabegh, M. H., Mirzazadeh, A., Salehian, S. and Wilhelm Weber, G., “A literature review on the fuzzy control chart; classifications & analysis.” International Journal of Supply and Operations Management, 1(2), 167-189. (2014)
24. 呂金河、許秀麗、楊惠萍,模糊資料之製程能力指標,國立成功大學統計學研究所碩士論文。(2006)
25. 呂金河、潘浙楠、謝育玟,計量值模糊管制圖之建構方法,國立成功大學統計學研究所碩士論文。(2006)
26. 潘浙楠、周芳儀,模糊歸屬函數在修正計數值抽樣檢驗計畫之應用,國立成功大學統計學研究所碩士論文。(2003)
27. 潘浙楠,品質管理:理論與實務(第三版),華泰文化,台灣。(2016)