簡易檢索 / 詳目顯示

研究生: 謝淞嶸
Hsieh, Sung-Jung
論文名稱: 探討甲基安非他命使用障礙者在注意力之事件相關的alpha頻譜振盪變化
Investigation of Attention Event-Related Alpha Spectrum Oscillation Changes in Individuals with Methamphetamine Use Disorder
指導教授: 郭乃文
Guo, Nai-Wen
學位類別: 碩士
Master
系所名稱: 醫學院 - 行為醫學研究所
Institute of Behavioral Medicine
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 101
中文關鍵詞: 甲基安非他命使用障礙嚴重度注意力腦波事件相關電位alpha頻譜
外文關鍵詞: Methamphetamine, Severity of substance use disorder, Attention, EEG, Event-related potentials, Alpha spectrum oscillation
相關次數: 點閱:61下載:30
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究背景與目的:甲基安非他命(Methamphetamine, MA)具有高成癮性,在台灣有高流行率,因此MA使用障礙者為當前主要的成癮戒治族群;過去研究支持MA使用障礙者之大腦額頂葉區域的神經生理表現與健康對照組有所不同,注意力表現呈現受損狀態,然MA使用障礙者具有不同嚴重度表現,在注意力缺損不盡相關,而是與個人脆弱性密切相關,較少研究探討不同嚴重度的MA者在神經生理與注意力表現的關聯;故本研究欲探討不同成癮嚴重程度的MA使用障礙者在注意力表現與神經生理表現之差異,以及MA使用障礙者在注意力表現與神經生理表現之關聯。
    研究方法:本研究受試者為在110年至112年間,由南部某教學醫院藥癮治療示範中心轉介預計參與正念預防復發治療團體治療且同意參與未來療效評估之成年人,排除中途拒絕2人,經醫師診斷未符合DSM-5甲基安非他命使用障礙症5人,最終共計23人參與研究並進行結果分析;以醫師依據DSM-5疾病診斷準則與受試者填寫成癮依賴嚴重度量表 (Severity of Dependence Scale; SDS)為成癮嚴重度指標;以廣泛性非語文注意力測驗(Comprehensive Non-verbal Attention Test Battery, CNAT)為注意力表現指標,進行CNAT時同步紀錄10-20系統之Fz、Cz,與Pz電極的腦波變化,事後進行訊號處理後,以腦波有效率和事件相關電位的alpha頻譜震盪(8-12Hz)作為神經生理指標;收集資料後透過無母數統計分析方法之卡方檢定、 Mann-Whitney 檢定、Kruskal-Wallis 檢定與 Spearman’s rho 相關係數進行資料分析。
    研究結果:(1)診斷評估重度之受試者在注意力表現指標(抑制注意力任務之違反錯誤與延遲錯誤),以及神經生理指標(抑制注意力任務之Fz電極alpha頻譜震盪、搜尋注意力與集中注意力任務之Pz電極alpha頻譜震盪差異)與中度或輕度MA使用障礙者有顯著差異。(2)自評成癮嚴重度高低兩組之間,受試者的注意力表現和神經生理指標都無顯著差異。(3)注意力任務出現衝動錯誤的受試者,其Fz電極alpha頻譜震盪顯著高於未犯錯誤之受試者;出現違反錯誤的受試者,其Fz、Cz和Pz電極alpha頻譜震盪顯著高於未犯錯誤之受試者。(4)腦波有效率與搜尋注意力任務之反應時間標準差,以及抑制注意力任務之反應時間呈現顯著負相關。(5)抑制注意力與其他注意力任務之間的反應時間和反應時間標準差,與alpha頻譜震盪變化呈現顯著正相關。
    討論:研究結果顯示診斷評估與自我評估所呈現之嚴重度在神經心理功能上差異廣泛,僅有診斷評估重度者在抑制注意力表現顯著較差,其Fz電極alpha頻譜震盪顯著較高,而輕度和中度的MA使用障礙者並無顯著注意力表現和神經生理表現差異;額頂葉區之腦波有效率和alpha頻譜震盪較能協助呈現MA使用障礙者的注意力表現,對於抑制功能表現尤為明顯,可作為未來MA使用障礙者進行神經心理介入之神經生理指標。建議未來研究方向可朝高階認知功能發展,增進已臨床神經心理為基礎之注意力介入可探討之有效指標。

    MA use disorder, due to its high prevalence and significant addiction potential, presents a critical population for intervention, particularly in Taiwan. However, MA use disorder is highly heterogeneous, and attention deficits are not uniformly present; rather, they are closely related to individual vulnerability. Neurophysiological indicators can provide evidence of the relationship between these impairments and psychological dysfunction in individuals with MA use disorder. Previous research has predominantly focused on comparing MA users with healthy controls, with limited exploration of the correspondence between MA use disorder and neuropsychological functioning within this population. This study examines the relationship between neurophysiological indicators and attention function in individuals with methamphetamine (MA) use disorder, focusing on different levels of addiction severity impact these aspects. This study investigates the brain's frontal and parietal regions, where attention deficits have been noted in MA users. The study captures variations in attention performance and underlying alpha spectrum oscillation (8-12 Hz) in event-related potentials across different levels of addiction. The findings suggest that there is no significant difference in attentional performance and event-related alpha spectrum oscillation among DSM-5 diagnostic criteria. Only severe MA use disorder in DSM-5 diagnostic criteria is associated with inhibitory attentional errors and event-related alpha spectrum oscillation on frontal lobe or parietal lobe, moderate and mild levels show less distinction in these indicators. The strong correlation between event-related alpha spectrum oscillation on frontal-parietal lobe and attention performance, especially for inhibitory attentional performance. This study underscores the importance of EEG alpha spectrum oscillation as neurophysiology indicators for attention performance, with potential applications in developing neuropsychological interventions tailored to addiction severity. By enhancing understanding of attention performance in MA users, the findings aim to identify neurophysiological markers that can inform the development of clinically neuropsychology-based intervention programs in the future.

    摘要I 第壹章、 緒論1 第一節、 甲基安非他命使用障礙者1 一、 甲基安非他命的藥理作用1 二、 甲基安非他命使用障礙診斷與流行率2 第二節、 甲基安非他命使用障礙對神經心理之影響5 一、 物質使用與成癮機制5 二、 甲基安非他命使用障礙者的大腦神經受損表現9 三、 甲基安非他命使用障礙者的神經心理功能缺損11 第三節、 甲基安非他命使用障礙之腦波指標12 一、 腦波與神經心理學12 二、 事件相關電位的alpha頻譜震盪14 三、 甲基安非他命使用障礙者之事件相關電位的頻譜震盪15 第四節、 研究動機與假設17 第貳章、 研究方法19 第一節、 研究設計與流程19 第二節、 研究對象20 第三節、 研究工具21 第四節、 統計分析26 第參章、 研究結果27 第一節、 診斷評估嚴重度比較27 一、 診斷評估嚴重度之人口學變項比較27 二、 診斷評估嚴重度之各項注意力任務表現比較30 三、 診斷評估嚴重度之不同注意力任務表現差異比較35 四、 診斷評估嚴重度之事件相關電位比較39 第二節、 自評嚴重度比較44 一、 自評嚴重度之人口學變項比較44 二、 自評嚴重度之各項注意力任務表現比較45 三、 自評嚴重度在不同注意力任務表現差異比較48 四、 自評嚴重度高低組在事件相關電位之比較51 第三節、 注意力表現與事件相關電位指標之分析56 一、 各項注意力任務之錯誤表現分析56 二、 不同注意力任務之錯誤表現差異分析61 三、 各項注意力任務之反應時間指標與事件相關電位指標之相關64 四、 不同注意力任務之反應時間指標差異與事件相關電位指標差異之相關66 第肆章、 討論68 第一節、 診斷評估嚴重度的注意力表現和神經生理指標差異 68 第二節、 自評嚴重度的注意力表現和神經生理指標差異68 第三節、 甲基安非他命使用者的注意力表現與神經生理指標之關聯性69 第四節、 研究限制70 一、 研究樣本70 二、 研究工具70 三、 施測流程70 第五節、 研究貢獻未來展望71 第伍章、 參考文獻73 附錄86 附錄一、物質依賴嚴重度量表(SDS)86 附錄二、Z分數與百分等級轉換表87

    張壬申(2019)。以早期抑制歷程之事件關聯電位與神經心理功能來探討注意力不足/過動症兒童的次族群。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/2ta8kn。
    陳靖(2011)。阿茲海默型失智症患者執行注意功能缺損對生活執行功能表現之影響。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/cznh88
    葉潔昕(2021)。慢性期創傷性腦傷患者對注意力和處理速度之主觀抱怨與神經心理測驗表現之探討。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/8nxr2g
    郭乃文(2002)。非語文性注意力與記憶力測驗指導手冊。臺北市,國立臺灣師範大學特殊教育中心。
    衛生福利部(2024)。藥物濫用案件暨檢驗統計資料【一一二年報分析】。臺北市。衛生福利部食品藥物管理署。https://www.fda.gov.tw/TC/site.aspx?sid=12491&r=1828931104
    衛生福利部(2020)。「107 年全國物質使用調查」結果報告。衛生福利部食品藥物管理署委託專案報告。國立臺灣大學公共衛生學院。
    Anthony, J. C., Warner, L. A., & Kessler, R. C. (1997). Comparative epidemiology of dependence on tobacco, alcohol, controlled substances, and inhalants: basic findings from the National Comorbidity Survey.
    Association, A. P. (2013). DSM-5 精神疾病診斷準則手冊 (台灣精神醫學會譯). 新北市: 合記圖書. American Psychiatric Association.
    Baicy, K., & London, E. D. (2007). Corticolimbic dysregulation and chronic methamphetamine abuse. Addiction, 102 Suppl 1, 5-15. https://doi.org/10.1111/j.1360-0443.2006.01777.x
    Bechara, A. (2005). Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nat Neurosci, 8(11), 1458-1463. https://doi.org/10.1038/nn1584
    Berman, S. M., Voytek, B., Mandelkern, M. A., Hassid, B. D., Isaacson, A., Monterosso, J., Miotto, K., Ling, W., & London, E. D. (2008). Changes in cerebral glucose metabolism during early abstinence from chronic methamphetamine abuse. Mol Psychiatry, 13(9), 897-908. https://doi.org/10.1038/sj.mp.4002107
    Berridge, C. W., & Waterhouse, B. D. (2003). The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev, 42(1), 33-84. https://doi.org/10.1016/s0165-0173(03)00143-7
    Bisagno, V., & Cadet, J. L. (2019). Expression of immediate early genes in brain reward circuitries: Differential regulation by psychostimulant and opioid drugs. Neurochem Int, 124, 10-18. https://doi.org/10.1016/j.neuint.2018.12.004
    Brenhouse, H. C., Sonntag, K. C., & Andersen, S. L. (2008). Transient D1 dopamine receptor expression on prefrontal cortex projection neurons: relationship to enhanced motivational salience of drug cues in adolescence. J Neurosci, 28(10), 2375-2382. https://doi.org/10.1523/jneurosci.5064-07.2008
    Britt, J. P., & Bonci, A. (2013). Optogenetic interrogations of the neural circuits underlying addiction. Curr Opin Neurobiol, 23(4), 539-545. https://doi.org/10.1016/j.conb.2013.01.010
    Bruce, G., & Jones, B. T. (2006). Methods, measures, and findings of attentional bias in substance use, abuse, and dependence. Handbook of implicit cognition and addiction, 135-149.
    Buzsáki, G., Anastassiou, C. A., & Koch, C. (2012). The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes. Nat Rev Neurosci, 13(6), 407-420. https://doi.org/10.1038/nrn3241
    Cadet, J. L., & Brannock, C. (1998). Free radicals and the pathobiology of brain dopamine systems. Neurochem Int, 32(2), 117-131. https://doi.org/10.1016/s0197-0186(97)00031-4
    Cadet, J. L., & Gold, M. (2018). Methamphetamine-induced psychosis: who says all drug use is reversible. Curr. Psychiatry, 16, 15-20.
    Chen, V. C., Chen, H., Lin, T. Y., Chou, H. H., Lai, T. J., Ferri, C. P., & Gossop, M. (2008). Severity of heroin dependence in Taiwan: reliability and validity of the Chinese version of the Severity of Dependence Scale (SDS[Ch]). Addict Behav, 33(12), 1590-1593. https://doi.org/10.1016/j.addbeh.2008.06.001
    Cho, A. K., & Melega, W. P. (2002). Patterns of methamphetamine abuse and their consequences. J Addict Dis, 21(1), 21-34. https://doi.org/10.1300/j069v21n01_03
    Ciccarone, D. (2011). Stimulant abuse: pharmacology, cocaine, methamphetamine, treatment, attempts at pharmacotherapy. Prim Care, 38(1), 41-58. https://doi.org/10.1016/j.pop.2010.11.004
    Cohen, R. A., & Cohen, R. A. (1993). Neuropsychological assessment of attention. The neuropsychology of attention, 307-327.
    Courtney, K. E., & Ray, L. A. (2014). Methamphetamine: an update on epidemiology, pharmacology, clinical phenomenology, and treatment literature. Drug Alcohol Depend, 143, 11-21. https://doi.org/10.1016/j.drugalcdep.2014.08.003
    Cox, W. M., Fadardi, J. S., & Pothos, E. M. (2006). The addiction-stroop test: Theoretical considerations and procedural recommendations. Psychol Bull, 132(3), 443-476. https://doi.org/10.1037/0033-2909.132.3.443
    Cressman, V. L., Balaban, J., Steinfeld, S., Shemyakin, A., Graham, P., Parisot, N., & Moore, H. (2010). Prefrontal cortical inputs to the basal amygdala undergo pruning during late adolescence in the rat. J Comp Neurol, 518(14), 2693-2709. https://doi.org/10.1002/cne.22359
    Cruickshank, C. C., & Dyer, K. R. (2009). A review of the clinical pharmacology of methamphetamine. Addiction, 104(7), 1085-1099. https://doi.org/10.1111/j.1360-0443.2009.02564.x
    Demers, C. H., Bogdan, R., & Agrawal, A. (2014). The Genetics, Neurogenetics and Pharmacogenetics of Addiction. Curr Behav Neurosci Rep, 1(1), 33-44. https://doi.org/10.1007/s40473-013-0004-8
    Doesburg, S. M., Bedo, N., & Ward, L. M. (2016). Top-down alpha oscillatory network interactions during visuospatial attention orienting. Neuroimage, 132, 512-519. https://doi.org/10.1016/j.neuroimage.2016.02.076
    Einevoll, G. T., Kayser, C., Logothetis, N. K., & Panzeri, S. (2013). Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat Rev Neurosci, 14(11), 770-785. https://doi.org/10.1038/nrn3599
    Everitt, B. J., & Robbins, T. W. (2013). From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neurosci Biobehav Rev, 37(9 Pt A), 1946-1954. https://doi.org/10.1016/j.neubiorev.2013.02.010
    Ford, C. P., Mark, G. P., & Williams, J. T. (2006). Properties and opioid inhibition of mesolimbic dopamine neurons vary according to target location. J Neurosci, 26(10), 2788-2797. https://doi.org/10.1523/jneurosci.4331-05.2006
    Foxe, J. J., Murphy, J. W., & De Sanctis, P. (2014). Throwing out the rules: anticipatory alpha-band oscillatory attention mechanisms during task-set reconfigurations. Eur J Neurosci, 39(11), 1960-1972. https://doi.org/10.1111/ejn.12577
    Gevins, A., & Smith, M. E. (2006). Electroencephalography (EEG) in neuroergonomics. In.
    Glasner-Edwards, S., & Mooney, L. J. (2014). Methamphetamine psychosis: epidemiology and management. CNS Drugs, 28(12), 1115-1126. https://doi.org/10.1007/s40263-014-0209-8
    Goldstein, R. Z., & Volkow, N. D. (2002). Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry, 159(10), 1642-1652. https://doi.org/10.1176/appi.ajp.159.10.1642
    Goldstein, R. Z., & Volkow, N. D. (2011). Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci, 12(11), 652-669. https://doi.org/10.1038/nrn3119
    Gossop, M., Darke, S., Griffiths, P., Hando, J., Powis, B., Hall, W., & Strang, J. (1995). The Severity of Dependence Scale (SDS): psychometric properties of the SDS in English and Australian samples of heroin, cocaine and amphetamine users. Addiction, 90(5), 607-614. https://doi.org/10.1046/j.1360-0443.1995.9056072.x
    Hägele, C., Schlagenhauf, F., Rapp, M., Sterzer, P., Beck, A., Bermpohl, F., Stoy, M., Ströhle, A., Wittchen, H. U., Dolan, R. J., & Heinz, A. (2015). Dimensional psychiatry: reward dysfunction and depressive mood across psychiatric disorders. Psychopharmacology (Berl), 232(2), 331-341. https://doi.org/10.1007/s00213-014-3662-7
    Harris, D. S., Boxenbaum, H., Everhart, E. T., Sequeira, G., Mendelson, J. E., & Jones, R. T. (2003). The bioavailability of intranasal and smoked methamphetamine. Clinical pharmacology & therapeutics, 74(5), 475-486.
    Helfrich, R. F., & Knight, R. T. (2019). Cognitive neurophysiology: Event-related potentials. Handb Clin Neurol, 160, 543-558. https://doi.org/10.1016/b978-0-444-64032-1.00036-9
    Hoffman, W. F., Schwartz, D. L., Huckans, M. S., McFarland, B. H., Meiri, G., Stevens, A. A., & Mitchell, S. H. (2008). Cortical activation during delay discounting in abstinent methamphetamine dependent individuals. Psychopharmacology (Berl), 201(2), 183-193. https://doi.org/10.1007/s00213-008-1261-1
    Homer, B. D., Solomon, T. M., Moeller, R. W., Mascia, A., DeRaleau, L., & Halkitis, P. N. (2008). Methamphetamine abuse and impairment of social functioning: a review of the underlying neurophysiological causes and behavioral implications. Psychol Bull, 134(2), 301-310. https://doi.org/10.1037/0033-2909.134.2.301
    Hornung, J. P. (2003). The human raphe nuclei and the serotonergic system. J Chem Neuroanat, 26(4), 331-343. https://doi.org/10.1016/j.jchemneu.2003.10.002
    Iyo, M., Namba, H., Yanagisawa, M., Hirai, S., Yui, N., & Fukui, S. (1997). Abnormal cerebral perfusion in chronic methamphetamine abusers: a study using 99MTc-HMPAO and SPECT. Prog Neuropsychopharmacol Biol Psychiatry, 21(5), 789-796. https://doi.org/10.1016/s0278-5846(97)00079-1
    Jennings, J. H., Sparta, D. R., Stamatakis, A. M., Ung, R. L., Pleil, K. E., Kash, T. L., & Stuber, G. D. (2013). Distinct extended amygdala circuits for divergent motivational states. Nature, 496(7444), 224-228. https://doi.org/10.1038/nature12041
    Kalechstein, A. D., Newton, T. F., & Green, M. (2003). Methamphetamine dependence is associated with neurocognitive impairment in the initial phases of abstinence. The Journal of neuropsychiatry and clinical neurosciences, 15(2), 215-220.
    Khajehpour, H., Mohagheghian, F., Ekhtiari, H., Makkiabadi, B., Jafari, A. H., Eqlimi, E., & Harirchian, M. H. (2019). Computer-aided classifying and characterizing of methamphetamine use disorder using resting-state EEG. Cogn Neurodyn, 13(6), 519-530. https://doi.org/10.1007/s11571-019-09550-z
    Khantzian, E. J. (1985). The self-medication hypothesis of addictive disorders: focus on heroin and cocaine dependence. Am J Psychiatry, 142(11), 1259-1264. https://doi.org/10.1176/ajp.142.11.1259
    Khazi, M., Kumar, A., & Vidya, M. (2012). Analysis of EEG using 10: 20 electrode system. International Journal of Innovative Research in Science, Engineering and Technology, 1(2), 185-191.
    Kish, S. J. (2008). Pharmacologic mechanisms of crystal meth. Cmaj, 178(13), 1679-1682. https://doi.org/10.1503/cmaj.071675
    Klimesch, W. (2012). α-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci, 16(12), 606-617. https://doi.org/10.1016/j.tics.2012.10.007
    Koob, G. F., & Bloom, F. E. (1988). Cellular and molecular mechanisms of drug dependence. Science, 242(4879), 715-723. https://doi.org/10.1126/science.2903550
    Koob, G. F., & Le Moal, M. (2005). Plasticity of reward neurocircuitry and the 'dark side' of drug addiction. Nat Neurosci, 8(11), 1442-1444. https://doi.org/10.1038/nn1105-1442
    Kraiwattanapirom, N., Siripornpanich, V., Suwannapu, W., Unaharassamee, W., Chawang, O., Lomwong, N., Vittayatavornwong, L., & Chetsawang, B. (2022). The quantitative analysis of EEG during resting and cognitive states related to neurological dysfunctions and cognitive impairments in methamphetamine abusers. Neurosci Lett, 789, 136870. https://doi.org/10.1016/j.neulet.2022.136870
    Le Merrer, J., Becker, J. A., Befort, K., & Kieffer, B. L. (2009). Reward processing by the opioid system in the brain. Physiological reviews.
    Liao, Y. C., Guo, N. W., Lei, S. H., Fang, J. H., Chen, J. J., Su, B. Y., Chen, S. J., & Tsai, H. F. (2015). Electroencephalogram valid rate in simple reaction time task as an easy index of children's attention functions. Pediatr Int, 57(5), 930-935. https://doi.org/10.1111/ped.12668
    London, E. D., Simon, S. L., Berman, S. M., Mandelkern, M. A., Lichtman, A. M., Bramen, J., Shinn, A. K., Miotto, K., Learn, J., Dong, Y., Matochik, J. A., Kurian, V., Newton, T., Woods, R., Rawson, R., & Ling, W. (2004). Mood disturbances and regional cerebral metabolic abnormalities in recently abstinent methamphetamine abusers. Arch Gen Psychiatry, 61(1), 73-84. https://doi.org/10.1001/archpsyc.61.1.73
    Mansfield, E. L., Karayanidis, F., & Cohen, M. X. (2012). Switch-related and general preparation processes in task-switching: evidence from multivariate pattern classification of EEG data. J Neurosci, 32(50), 18253-18258. https://doi.org/10.1523/jneurosci.0737-12.2012
    Meredith, C. W., Jaffe, C., Ang-Lee, K., & Saxon, A. J. (2005). Implications of chronic methamphetamine use: a literature review. Harv Rev Psychiatry, 13(3), 141-154. https://doi.org/10.1080/10673220591003605
    Mitler, M. M., Hajdukovic, R., & Erman, M. K. (1993). Treatment of narcolepsy with methamphetamine. Sleep, 16(4), 306-317.
    Monterosso, J. R., Ainslie, G., Xu, J., Cordova, X., Domier, C. P., & London, E. D. (2007). Frontoparietal cortical activity of methamphetamine-dependent and comparison subjects performing a delay discounting task. Hum Brain Mapp, 28(5), 383-393. https://doi.org/10.1002/hbm.20281
    Moratalla, R., Khairnar, A., Simola, N., Granado, N., García-Montes, J. R., Porceddu, P. F., Tizabi, Y., Costa, G., & Morelli, M. (2017). Amphetamine-related drugs neurotoxicity in humans and in experimental animals: Main mechanisms. Prog Neurobiol, 155, 149-170. https://doi.org/10.1016/j.pneurobio.2015.09.011
    Müller-Putz, G. R. (2020). Electroencephalography. Handb Clin Neurol, 168, 249-262. https://doi.org/10.1016/b978-0-444-63934-9.00018-4
    Nestler, E. J., Peña, C. J., Kundakovic, M., Mitchell, A., & Akbarian, S. (2016). Epigenetic Basis of Mental Illness. Neuroscientist, 22(5), 447-463. https://doi.org/10.1177/1073858415608147
    Nestor, L. J., Ghahremani, D. G., Monterosso, J., & London, E. D. (2011). Prefrontal hypoactivation during cognitive control in early abstinent methamphetamine-dependent subjects. Psychiatry Res, 194(3), 287-295. https://doi.org/10.1016/j.pscychresns.2011.04.010
    Newton, T. F., Cook, I. A., Kalechstein, A. D., Duran, S., Monroy, F., Ling, W., & Leuchter, A. F. (2003). Quantitative EEG abnormalities in recently abstinent methamphetamine dependent individuals. Clin Neurophysiol, 114(3), 410-415. https://doi.org/10.1016/s1388-2457(02)00409-1
    Newton, T. F., Kalechstein, A. D., Hardy, D. J., Cook, I. A., Nestor, L., Ling, W., & Leuchter, A. F. (2004). Association between quantitative EEG and neurocognition in methamphetamine-dependent volunteers. Clin Neurophysiol, 115(1), 194-198. https://doi.org/10.1016/s1388-2457(03)00314-6
    Oh, J. S., Lyoo, I. K., Sung, Y. H., Hwang, J., Kim, J., Chung, A., Park, K. S., Kim, S. J., Renshaw, P. F., & Song, I. C. (2005). Shape changes of the corpus callosum in abstinent methamphetamine users. Neurosci Lett, 384(1-2), 76-81. https://doi.org/10.1016/j.neulet.2005.04.082
    Olive, M. F., Koenig, H. N., Nannini, M. A., & Hodge, C. W. (2001). Stimulation of endorphin neurotransmission in the nucleus accumbens by ethanol, cocaine, and amphetamine. J Neurosci, 21(23), Rc184. https://doi.org/10.1523/JNEUROSCI.21-23-j0002.2001
    Pan, Z. Z. (1998). mu-Opposing actions of the kappa-opioid receptor. Trends Pharmacol Sci, 19(3), 94-98. https://doi.org/10.1016/s0165-6147(98)01169-9
    Panenka, W. J., Procyshyn, R. M., Lecomte, T., MacEwan, G. W., Flynn, S. W., Honer, W. G., & Barr, A. M. (2013). Methamphetamine use: a comprehensive review of molecular, preclinical and clinical findings. Drug Alcohol Depend, 129(3), 167-179. https://doi.org/10.1016/j.drugalcdep.2012.11.016
    Paulus, M. P., Hozack, N. E., Zauscher, B. E., Frank, L., Brown, G. G., Braff, D. L., & Schuckit, M. A. (2002). Behavioral and functional neuroimaging evidence for prefrontal dysfunction in methamphetamine-dependent subjects. Neuropsychopharmacology, 26(1), 53-63. https://doi.org/10.1016/s0893-133x(01)00334-7
    Polesskaya, O., Silva, J., Sanfilippo, C., Desrosiers, T., Sun, A., Shen, J., Feng, C., Polesskiy, A., Deane, R., Zlokovic, B., Kasischke, K., & Dewhurst, S. (2011). Methamphetamine causes sustained depression in cerebral blood flow. Brain Res, 1373, 91-100. https://doi.org/10.1016/j.brainres.2010.12.017
    Ricaurte, G. A., Schuster, C. R., & Seiden, L. S. (1980). Long-term effects of repeated methylamphetamine administration on dopamine and serotonin neurons in the rat brain: a regional study. Brain Res, 193(1), 153-163. https://doi.org/10.1016/0006-8993(80)90952-x
    Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev, 18(3), 247-291. https://doi.org/10.1016/0165-0173(93)90013-p
    Salo, R., Fassbender, C., Buonocore, M. H., & Ursu, S. (2013). Behavioral regulation in methamphetamine abusers: an fMRI study. Psychiatry Res, 211(3), 234-238. https://doi.org/10.1016/j.pscychresns.2012.10.003
    Schep, L. J., Slaughter, R. J., & Beasley, D. M. (2010). The clinical toxicology of metamfetamine. Clin Toxicol (Phila), 48(7), 675-694. https://doi.org/10.3109/15563650.2010.516752
    Schmidt, M. F., Gan, Z. Y., Komander, D., & Dewson, G. (2021). Ubiquitin signalling in neurodegeneration: mechanisms and therapeutic opportunities. Cell Death Differ, 28(2), 570-590. https://doi.org/10.1038/s41418-020-00706-7
    Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36(2), 241-263. https://doi.org/10.1016/s0896-6273(02)00967-4
    Sekine, Y., Minabe, Y., Ouchi, Y., Takei, N., Iyo, M., Nakamura, K., Suzuki, K., Tsukada, H., Okada, H., Yoshikawa, E., Futatsubashi, M., & Mori, N. (2003). Association of dopamine transporter loss in the orbitofrontal and dorsolateral prefrontal cortices with methamphetamine-related psychiatric symptoms. Am J Psychiatry, 160(9), 1699-1701. https://doi.org/10.1176/appi.ajp.160.9.1699
    Subu, R., Jayanthi, S., & Cadet, J. L. (2020). Compulsive methamphetamine taking induces autophagic and apoptotic markers in the rat dorsal striatum. Arch Toxicol, 94(10), 3515-3526. https://doi.org/10.1007/s00204-020-02844-w
    Sulzer, D., Sonders, M. S., Poulsen, N. W., & Galli, A. (2005). Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol, 75(6), 406-433. https://doi.org/10.1016/j.pneurobio.2005.04.003
    Tai, H. C., & Schuman, E. M. (2008). Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat Rev Neurosci, 9(11), 826-838. https://doi.org/10.1038/nrn2499
    Thompson, P. M., Hayashi, K. M., Simon, S. L., Geaga, J. A., Hong, M. S., Sui, Y., Lee, J. Y., Toga, A. W., Ling, W., & London, E. D. (2004). Structural abnormalities in the brains of human subjects who use methamphetamine. J Neurosci, 24(26), 6028-6036. https://doi.org/10.1523/jneurosci.0713-04.2004
    Topp, L., & Mattick, R. P. (1997). Choosing a cut-off on the Severity of Dependence Scale (SDS) for amphetamine users. Addiction, 92(7), 839-845.
    Trigo, J. M., Martin-García, E., Berrendero, F., Robledo, P., & Maldonado, R. (2010). The endogenous opioid system: a common substrate in drug addiction. Drug Alcohol Depend, 108(3), 183-194. https://doi.org/10.1016/j.drugalcdep.2009.10.011
    van der Plas, E. A., Crone, E. A., van den Wildenberg, W. P., Tranel, D., & Bechara, A. (2009). Executive control deficits in substance-dependent individuals: a comparison of alcohol, cocaine, and methamphetamine and of men and women. J Clin Exp Neuropsychol, 31(6), 706-719. https://doi.org/10.1080/13803390802484797
    Volkow, N. D., Chang, L., Wang, G. J., Fowler, J. S., Leonido-Yee, M., Franceschi, D., Sedler, M. J., Gatley, S. J., Hitzemann, R., Ding, Y. S., Logan, J., Wong, C., & Miller, E. N. (2001). Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiatry, 158(3), 377-382. https://doi.org/10.1176/appi.ajp.158.3.377
    Volkow, N. D., Koob, G. F., & McLellan, A. T. (2016). Neurobiologic Advances from the Brain Disease Model of Addiction. N Engl J Med, 374(4), 363-371. https://doi.org/10.1056/NEJMra1511480
    Volkow, N. D., Michaelides, M., & Baler, R. (2019). The Neuroscience of Drug Reward and Addiction. Physiol Rev, 99(4), 2115-2140. https://doi.org/10.1152/physrev.00014.2018
    Volkow, N. D., & Morales, M. (2015). The Brain on Drugs: From Reward to Addiction. Cell, 162(4), 712-725. https://doi.org/10.1016/j.cell.2015.07.046
    Volkow, N. D., Tomasi, D., Wang, G. J., Logan, J., Alexoff, D. L., Jayne, M., Fowler, J. S., Wong, C., Yin, P., & Du, C. (2014). Stimulant-induced dopamine increases are markedly blunted in active cocaine abusers. Mol Psychiatry, 19(9), 1037-1043. https://doi.org/10.1038/mp.2014.58
    Weiss, F. (2005). Neurobiology of craving, conditioned reward and relapse. Curr Opin Pharmacol, 5(1), 9-19. https://doi.org/10.1016/j.coph.2004.11.001
    Wise, R. A. (2008). Dopamine and reward: the anhedonia hypothesis 30 years on. Neurotox Res, 14(2-3), 169-183. https://doi.org/10.1007/bf03033808
    Zorick, T., Nestor, L., Miotto, K., Sugar, C., Hellemann, G., Scanlon, G., Rawson, R., & London, E. D. (2010). Withdrawal symptoms in abstinent methamphetamine-dependent subjects. Addiction, 105(10), 1809-1818. https://doi.org/10.1111/j.1360-0443.2010.03066.x

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE