簡易檢索 / 詳目顯示

研究生: 許嘉文
Hsu, Chia-Wen
論文名稱: 富含血小板血漿對於口腔再生相關細胞在細胞培養的影響
The effects of platelet-rich plasma on cell cultures of oral cells related with regeneration
指導教授: 袁國
Yuan, Kuo
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 80
中文關鍵詞: 富含血小板血漿生長因子缺乏血小板血漿
外文關鍵詞: Platelet-rich plasma, platelet-de, growth factor
相關次數: 點閱:134下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 血小板經血管受傷快速活化,其內的α顆粒釋放內容物包括生長因子及thrombospondin(TSP)等;生長因子如PDGF、TGF-β可以增加傷口癒合。富含血小板血漿(Platelet-rich plasma, PRP)由自體採血,經過二次離心濃縮為含有大量血小板的血漿;文獻上PRP對於臨床上應用在局部或區域性骨缺損,其加成的效果一直存有爭議。此外,血小板亦富含thrombospondin醣蛋白,其中TSP-1主要已知的功能是抑制血管新生(angiogenesis inhibitor)。也就是說,血小板同時富含正面的生長因子及負面的調控因子,所以兩方面的加減效果對於口腔的傷口癒合,有待實驗加以釐清。本研究目的為評估在活體外PRP及調控因子對口腔相關再生細胞生物功能的影響。
    20位志願者參與本實驗抽取靜脈血加以分離出缺乏血小板血漿(PPP)及100-120×10⁴/μl血小板之PRP。以0%、2%、5%、15%、30%新鮮PRP及2%、5%新鮮PPP加入不含血清而含有纖維素原(fibrinogen)及凝血酶(thrombin)之培養液形成膠體後,然後分別置入牙周靭帶纖維母細胞、成骨細胞、內皮細胞於膠體上培養6天,以Alamar blue assay進行細胞增生的檢測、比較不同濃度對這些細胞的增生是否會有影響。以西方墨點法(Western blot)檢測PRP中TSP-1的表現;以酵素連結免疫吸附分析(ELISA)來推估PRP及30%PRP gel上懸浮培養液中TSP-1的量。最後上述細胞培養在相當於PRP膠體懸浮培養液中TSP-1的連續性濃度2天。
    結果顯示,三種口腔再生相關的細胞在低濃度PRP膠體上(小於5%) 6天的培養有增加的現象,在高濃度PRP膠體上(15-30%)的培養則呈現減少的趨勢。西方墨點法證明PRP含有高量TSP-1;酵素連結免疫吸附分
    析中TSP-1量在PRP溶解液為183.3 ± 21.6 μg/ml以及30% PRP膠體懸
    1
    浮液為9.7 ± 1.6 μg/ml。細胞培養在TSP-1連續性濃度下,2天後呈現隨TSP-1濃度劑量增高而細胞減少的形式。
    在本實驗有限的資料中,三種口腔再生相關的細胞在高濃度PRP膠體上的培養呈現統計上減少的趨勢;此外,PRP中含有大量的TSP-1,而TSP-1可能在細胞凋亡扮演重要的角色。

    Platelets are rapidly activated by blood vessel injury and release products from the alpha granules containing growth factors, thrombospondin, fibrinogen, etc. The growth factors include platelet-derived growth factor (PDGF) and transforming growth factor-β (TGF-β), which can enhance wound healing. Platelet-rich plasma (PRP) is derived from autologous blood by sequestering and concentrating the platelets via centrifugation. PRP gel is an autologous modification of fibrin glue that has been described and used in various applications, but its clinical results remained controversial. We wanted to know whether a negative regulator exists in PRP, because the major function of thrombospondin-1 (TSP-1) is inhibiting angiogenesis. The aim of this study was to evaluate the regulators on PRP effects and its biological function in vitro.
    Twenty volunteers participated in this study and donated their venous blood. Using centrifugation, platelet-poor plasma (PPP) and PRP containing 100-120 × 104/μl platelets were obtained. We added different concentrations of fresh PRP and PPP to cell cultures related to regeneration: periodontal ligament (PDL) fibroblast, osteoblast, and endothelial cell cultures. We measured the rate of cell proliferation using an alamar blue assay for 6 days. Subsequently, after protein concentrations had been determined, the band density of TSP-1 was examined using Western blotting. The quantitation of TSP-1 was estimated using an ELISA assay. Finally, we incubated the cell cultures for 2 days in serial concentrations of TSP-1 that corresponded to 30% PRP gel.
    3
    We found that, after 6 days of incubation, the cells increased in a low concentration of PRP (< 5%) and decreased in a high concentration (15-30%). Western blotting showed that TSP-1 expression was higher in PRP than in PPP. An ELISA assay showed that the quantities of TSP-1 expressed were 183.3 ± 21.6 μg/ml in PRP and 9.7 ± 1.6 μg/ml in the supernatant of 30% PRP gel. The cell culture in serial concentrations of TSP-1 dose-dependently decreased.
    Within the limits of the present study, it can be concluded that the number of cells significantly decreased when treated with a high concentration of PRP and that PRP is abundant in TSP-1, which may play an important role in apoptosis.

    中文摘要...........................................................................................................1 英文摘要…………………………………………………………...................3 致謝...................................................................................................................5 總目錄...............................................................................................................6 表目錄...............................................................................................................9 圖目錄.............................................................................................................10 符號.................................................................................................................11 緒 論.........................................................................................…………12 一、血小板概論…………..….…………………..…………………………12 二、血小板在止血的角色……..………………………..……….................12 三、血小板中主要生長因子的生物功能………………………………….13 四、傷口癒合及骨再生……….……………………………………………14 五、富含血小板血漿在臨床應用的爭議…….……………………………15 六、Thrombospondin-1的發現及其特性….………………………………17 七、研究動機……………………………….………………………………19 材料與方法.....................................................................................................21 I. 材料.............................................................................................................21 I-1抽血樣本...............................................................................................21 6 I-2人類組織樣本........................................................................................21 I-3試劑藥品................................................................................................22 I-4抗體及純化蛋白....................................................................................24 I-5耗材........................................................................................................24 I-6套裝實驗組............................................................................................25 I-7儀器........................................................................................................25 II. 方法...........................................................................................................27 II -1 PRP的製備.........................................................................................27 II -2細胞培養.............................................................................................28 2.1配製DMEM培養液……………………………………………….28 2.2.1牙周靭帶細胞(PDL cell)及成骨細胞(osteoblast) 的初代培養………………………………………………………………...28 2.2.2人類臍靜脈內皮細胞(HUVEC)的初代培養……………………29 2.2.3細胞繼代培養................................................................................30 2.2.4保存細胞........................................................................................31 2.2.5解凍細胞…………………………………………………………32 2.2.6細胞計數…………………………………………………………32 Ⅱ-3膠體上(on gel)的細胞培養................................................................33 Ⅱ-4細胞增生分析 (cell proliferation assay) ...........................................34 7 Ⅱ-5蛋白質濃度.........................................................................................35 Ⅱ-6蛋白質電泳 ( protein electrophotresis)..............................................36 Ⅱ-7西方點墨法 (Western blot)................................................................37 Ⅱ-8酵素連結免疫吸附分析 (ELISA).....................................................39 Ⅱ-9在TSP-1遞減濃度的細胞培養.........................................................41 II-10統計方法............................................................................................42 實驗結果.........................................................................................................43 討 論...........................................................................................................46 結 論...........................................................................................................53 參考文獻.........................................................................................................54 表.....................................................................................................................63 圖…………………………………………………………………………….66 自述.................................................................................................................80

    Adams JC. Thrombospondins: multifunctional regulators of cell interactions. Annu. Rev. Cell Dev Biol 17: 25-51, 2001.
    Aghaloo TL, Moy PK, Freymiller EG. Investigation of platelet-rich plasma in rabbit cranial defects: A pilot study. J Oral Maxillofac Surg 60: 1176-1181, 2002.
    Ahmed SA, Gogal Jr RM, Walsh JE. A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: An alternative to H3-thymidine incorporation assay. J Immunol Methods 170: 211-224, 1994.
    Anitua E, Andia I, Ardanza B, Nurden P, Nurden AT. Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost 91: 4–15, 2004.
    Anitua E. Plasma rich in growth factors: Preliminary results of use in the preparation of future sites for implants. Int J Oral Maxillofac Implant 14: 529-535, 1999.
    Annunziata M, Oliva A, Buonaiuto C, Di Feo A, Di Pasquale R, Passaro I, Guida L. In vitro cell-type specific biological response of human periodontally related cells to platelet-rich plasma. J Periodont Res 40: 489–495, 2005.
    Armstrong LC, Bjorkblom B, Hankenson KD, Siadak AW, Stiles CE, Bornstein P. Thrombospondin 2 inhibits microvascular endothelial cell proliferation by a caspase-independent mechanism. Mol Biol Cell 13: 1893-1905, 2002.
    Armstrong LC, Bornstein P. Thrombospondins 1 and 2 function as inhibitors of angiogenesis. Matrix Biol 22: 63-71, 2003.
    Arpornmaeklong P, Kochel M, Depprich R, Kubler NR, Wurzler KK. Influence of platelet-rich plasma (PRP) on osteogenic differentiation of rat bone marrow stromal cells. An in vitro study. Int J Oral Maxillofac Surg 33: 60-70, 2004.
    54
    Baenziger NL, Brodie GN, Majerus PW. A thrombin-sensitive protein of human platelet membranes. Proc Natl Acad Sci USA 68: 240-243, 1971.
    Baenziger NL, Brodie GN, Majerus PW. Isolation and properties of a thrombin-sensitive protein of human platelets. J Biol Chem 247: 2723 -31, 1972.
    Bagavandoss P, Wilks JW. Specific inhibition of endothelial cell proliferation by thrombospondin. Biochem Biophys Res Commun 170: 867-872, 1990.
    Blockmans D, Deckmyn H, Verymylen J. Platelet activation. Blood Rev 9:143-156, 1995.
    Bornstein P. Thrombospondins as matricecellular modulators of cell function. J Clin Invest 107: 929-934, 2001.
    Boukamp P, Bleuel K, Popp S, Vormwald DV, Fusenig N. Functional evidence for tumor-suppressor activity on chromosome 15 in human skin carcinoma cells and thrombospondin-1 as the potential suppressor. J Cell Physiol 173: 256-260, 1997.
    Bowen-Pope DF, Vogel A, Ross R. Production of platelet derived growth factor like molecules reduced expression of platelet derived growth factor receptors accompany transformation by a wide spectrum of agents. Proc Natl Acad Sci USA 81: 2396-2400, 1984.
    Brown KJ, Maynes SF, Bezos A, Maguire DJ, Ford MD, Parish CR. A novel in vitro assay for human angiogenesis. Lab Invest 75: 539-555, 1996.
    Camargo PM, Lekovic V, Weinlaender M, Vasilic N, Madzarevic M, Kenney EB. Platelet-rich plasma and bovine porous bone mineral combined with guided tissue regeneration in the treatment of intrabony defect in humans. J Periodont Res 37: 300-306, 2002.
    Carlson ER. Bone grafting the jaws in the 21st century: The use of platelet-rich plasma and bone morphogenetic protein. Alpha Omegan 93: 26-30, 2000.
    Chen D, Asahara T, Krasinski K et al. Antibody blockade of thrombospondin
    55
    accelerates reendothelialization and reduces neointima formation in balloon-injured rat carotid artery. Circulation 100: 830-854, 1999.
    Choi BH, Zhu SJ, Kim BY, Huh JY, Lee SH, Jung JH. Effect of platelet-rich plasma (PRP) concentration on the viability and proliferation of alveolar bone cells: an in vitro study. Int J Oral Maxillofac Surg 34: 420–424, 2005.
    Coligan JE, Slayter HS. Structure of thrombospondin. J Biol Chem 259: 3944-8, 1984.
    Davis JC, Buckley CJ, Per-Olof B. Compromised soft tissue wounds: Correction of wound hypoxia. In: Hunt TK(ed). Problem Wounds: The Role of Oxygen. : Elsevier. New York.: 143-152, 1988.
    Dawes J, Clemetson KJ, Gogstad GO, McGregor J, Clezardin P, Prowse CV, Pepper DS. A radioimmunoassay for thrombospondin, used in a comparative study of thrombospondin, beta-thromboglobulin and platelet factor 4 in healthy volunteers. Thromb Res 29: 569-581, 1983.
    de Fraipont F, Nicholson AC, Feige JJ, Van Meir EG. Thrombospondins and tumor angiogenesis. Trends Mol Med 7: 401-407, 2001.
    Diegelmann RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9: 283-289, 2004.
    DiPietro LA, Nebgen DR, Polverini PJ. Downregulation of endothelial cell thrombospondin 1 enhances in vitro angiogenesis. J Vasc Res 31: 178-185, 1994.
    Disdier M, Legrand C, Bouillot C, Dubernard V, Pidard D and Nurden AT. Quantitation of platelet fibrinogen and thrombospondin in glanzmann’s thrombasthenia by electroimmunoassay. Thromb Res 53: 521-533, 1989.
    Dixit VM, Grant GA, Santoro SA, Frazier WA. Isolation and characterization of a heparin-binding domain from the amino terminus of platelet thrombospondin. J Biol Chem 259: 10100-5, 1984.
    Eppley BL, Woodell JE, Higgins J. Platelet quantification and growth factor analysis from platelet-rich plasma: Implications for wound healing. Plast Reconstr Surg 114: 1502-1508, 2004. 56
    Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 161: 851-585, 1989.
    Ferreira CF, Carriel MC, Filho JS, Granjeiro JM, Oliveira CM, Magini RS.
    Platelet-rich plasma influence on human osteoblasts growth. Clin Oral Imp
    Res 16: 456–460, 2005.
    Folkman J, Klagsbrun M. Angiogenic factors. Science 233:442-447, 1987.
    Frechette JP, Martineau I, Gagnon G. Platelet-rich plasmas: Growth factor content and roles in wound healing. J Dent Res 84: 434-439, 2005.
    Froum SJ, Wallace SS, Tarnow DP, Cho SC. Effect of platelet-rich plasma on bone growth and osseointegration in human maxillary sinus grafts: three bilateral case reports. Int J Periodontics Restorative Dent 22: 45-53, 2002.
    Fuerst G, Gruber R, Tangl S, Sanroman F, Watzek G. Effects of fibrin sealant protein concentrate with and without platelet-released growth factors on bony healing of cortical mandibular defects. An experimental study in minipings. Clin Oral Impl Res 15: 301-307, 2004.
    Gonshor A. Technique for producing platelet-rich plasma and platelet concentrate: background and process. Int J Periodontics Restorative Dent 22: 547–557, 2002.
    Goshen R, Hochberg AA, Lorner G et al. Purification and characterization of placental heparanase and its expression by cultured cytotrophoblasts. Mol Human Reprod 2: 679-684, 1996.
    Graziani F, Ivanovski S, Cei S, Ducci F, Tonetti M, Gabriele M. The in vitro effect of different PRP concentrations on osteoblasts and fibroblasts. Clin. Oral Impl Res 17: 212–219, 2006.
    Guida L. In vitro cell-type specific biological response of human periodontally related cells to platelet-rich plasma. J Periodont Res 40: 489–495, 2005.
    57
    Iruela-Arispe ML, Bornstein P, Sage H. Thrombospondin exerts an antiangiogenic effect on tube formation by endothelial cells in vitro. Proc Natl Acad Sci USA 88: 5026-5030, 1991.
    Iruela-Arispe ML, Lombardo M, Krutzsch HC, Lawler J, Roberts DD. Inhibition of angiogenesis by thrombospondin-1 is mediated by 2 independent regions within the type 1 repeats. Circulation 100: 1423-1431, 1999.
    Kanno S, Oda N, Abe M, Terai Y, Ito M, Shitara K, Tabayashi K, Shibuya M, Sato Y. Roles of two VEGF receptors, Flt-1 and KDR, in the signal transduction of VEGF effects in human vascular endothelial cells. Oncogene 19: 2138-2146, 2000.
    Kanno T, Takahashi T, Tsujisawa T, Ariyoshi W, Nishihara T. Platelet-rich plasma enhances human osteoblast-like cell proliferation and differentiation. J Oral Maxillofac Surg 63: 362-9, 2005.
    Kevy SV, Jacobson MS. Comparison of methods for point of care preparation of autologous platelet gel. J Extra Corpor Technol 36: 28–35, 2004.
    Kim SG, Chung CH, Kim YK, Park JC, Lim SC. Use of particulate dentin-plaster of Paris combination with / without platelet-rich plasma in the treatment of bone defects around implants. Int J Oral Maxillofac Implants 17: 86-92, 2002.
    Lahav J, Lawler J, Gimbrone MA. Thrombospondin interactions with fibronectin and fibrinogen. Mutual inhibition in binding. Eur J Biochem 145, 151-6, 1984.
    Lawler J, Derick LH, Connolly JE, Chen JH, Chao FC. The structure of human platelet thrombospondin. J Biol Chem 260: 3762-72, 1985.
    Lawler JW, Slayter HS, Coligan JE. Isolation and characterization of a high molecular weight glycoprotein from human blood platelets. J Biol Chem 253: 8609-16, 1978.
    Lekovic V, Camargo PM, Weinlaender M, Vasilic N, Kenney EB. Comparison of platelet-rich plasma, bovine porous bone mineral, and guided tissue regeneration versus platelet-rich plasma and bovine porous bone mineral in the treatment of intrabony defects: A reentry study. J Periodontol 73: 198-205,
    58
    2002.
    Margossian S, Lawler JW, Slayter HS. Physical characterization of platelet thrombospondin. J Biol Chem 256: 7495-7500, 1981.
    Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR. Platelet-rich plasma: Growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 85: 638-646, 1998.
    Marx RE. Platelet concentrate: a strategy for accelerating and improving bone regeneration. In: Davies JE, ed. Bone Engineering. Toronto: University of Toronto: 447–453, 2000.
    Matsuda N, Lin WL, Kumar NM, Cho MI, Genco RJ. Mitogenic, chemotactic, and synthetic responses of rat periodontal ligament fibroblastic cells to polypeptide growth factors in vitro. J Periodontol 63:515-525 ,1992.
    Mayr-Wohlfart U, Waltenberger J, Hausser H, Kessler S, Gunther KP, Dehio C, Puhl W, Brenner RE. Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts. Bone 30: 472-7, 2002.
    Mumby SM, Raugi GJ, Bornstein P. Interactions of thrombospondin with extracellular matrix proteins: selective binding to type V collagen. J Cell Biol 98: 646-52, 1984.
    Mustoe TA, Purdy J, Gramates P. Reversal of impaired wound healing in irradiated rats by platelet derived growth factor-BB: Requirement of an active bone marrow. Am J Surg 158: 348-350, 1989.
    O’Brien J, Wilson I, Orton T, Pognan F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267: 5421-5426, 2000.
    Okuda K, Kawase T, Momose M, Murata M, Saito Y, Suzuki H, Wolff LF, Yoshie H. Platelet-rich plasma contains high levels of platelet-derived growth factor and transforming growth factor-β and modulates the proliferation of periodontally related cells in vitro. J Periodontol 74: 849-857, 2003.
    Panagakos FS. Insulin-like growth factors-I and –II stimulate chemotaxis of osteoblasts isolated from fetal rat calvaria. Biochimie 75: 991-994, 1993. 59
    Panetti TS, Chen H, Misenheimer TM, Getzler SB, Mosher DF. Endothelial cell mitogenesis induced inhibition by thrombospondin-1 and thrombospondin-2 by LPA. J Lab Clin Med 129: 208-16, 1997.
    Pierce GF, Mustoe TA, Atrock BW, Deuel TF, Tomason A. Role of platelet-derived growth factor in wound healing. J Cell Biochem 45: 319-326, 1991.
    Pierce GF, Mustoe TA, Deuel TF. Transforming growth factor-β induces increased directed cellular migration and tissue repair in rats. In: Barbul A, et al (eds). Growth Factors and Other Aspects of Wound Healing: Biological and Clinical Implications. Alan R. Liss. New York., 1988.
    Pierce GF, Tarpley J, Yanagihain D. PDGF-BB, TGF-β1 and basic FGF in dermal wound healing: Neo-vessel and matrix formation and cessation of repair. Am J Pathol 140: 1375-1388, 1992.
    Raghoebar GM, Schortinghuis J, Liem R, Ruben JL, Van Der Wal JE, Vissink A. Does platelet-rich plasma promote remodeling of autologous bone grafts used for augmentation of the maxillary sinus floor? Clin Oral Impl Res 16: 349-356, 2005.
    Roberts AB. Transforming growth factor-β. In: Canalis E (ed). Skeletal Growth Factors. Lippincott, Williams & Wilkins. Baltimore, USA. 221-249, 2000.
    Rudkin GH, Miller TA. Growth factors in surgery: Review. J Plastic Reconstr Surg 97: 469-476, 1996.
    Ruggeri ZM, Savage B. Biological functions of von Willebrand factor. In: Ruggeri ZM, ed. Von Willebrand Factor and the Mechanisms of Platelet Function. Springer-Verlag. Berlin, Germany.: 79-109, 1998.
    Sanchez AR, Sheridan PJ, Kupp LI. Is platelet-rich plasma the perfect enhancement factor? A current review. Int J Oromaxillofacial Implant 18: 93-103, 2003.
    60
    Simantov R, Febbraio M, Crombie R, Asch AS, Nachman RL, Silverstein RL. Histidine-rich glycoprotein inhibits the antiangiogenic effect of thrombospondin-1. J Clin Invest 107: 45–52, 2001.
    Streit M. Thrombospondin-2: a potent endogenous inhibitor of tumor growth and angiogenesis. Proc Natl Acad Sci USA 96: 14888-14893, 1999.
    Switalska HI, Niewiarowski S, Tuszynski GP, Rucinski B, Schmaier AH, Morinelli TA, Cierniewski CS. Radioimmunoassay of human platelet thrombospondin: different patterns of thrombospondin and beta-thromboglobulin antigen secretion and clearance from the circulation. J Lab Clin Med 106: 690-700, 1985.
    Tolsma SS, Volpert OV, Good DJ, Frazier WA, Polverini PJ, Bouck N. Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. J Cell Biol 122: 497-511, 1993.
    Tracy PR. Role of platelets and leukocytes in coagulation. In: Colman RW., et al, ed. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. 4th ed. J.B. Lippincott Co. Philadelphia, USA.: 575-596, 2001.
    Turitto VT, Weiss HJ, Zimmerman TS, Sussman II. Factor VIII/von Willebrand factor in subendothelium mediates platelet adhesion. Blood 65: 823-831, 1985.
    Valcarce C, Bjork I, Stenflo J. The epidermal growth factor precursor. A calcium-binding, beta—hydroxyasparagine containing modular protein present on the surface of platelets. Eur J Biochem 260: 200-207, 1999.
    Webb NJ, Bottomley MJ, Watson CJ, Brenchley PE. Vascular endothelial growth factor(VEGF) is released from platelets during blood clotting: implications for measurement of circulating VEGF levels in clinical disease. Clin Sci 94: 395-404, 1998.
    Weibrich G, Kleis WKG, Hafner G. Growth factor levels in the platelet-rich plasma produced by 2 different methods: Curasan-type PRP kit versus PCCS PRP system. Int J Oral Maxillofac Implant 17: 184-190, 2002.
    Weibrich G, Kleis WKG, Hafner G, Hitzler WE. Growth factor levels in 61
    platelet-rich plasma and correlations with donor age, sex, and platelet count. J Cranio-Maxillofac Surg 30: 97–102, 2002.
    Wirthlin MR. Growth substances: Potential use in periodontics. J West Soc Periodontol Periodontal Abstr 37: 101-125, 1989.
    Zechner W, Tangl S, Tepper G, Frust G, Bernhart T, Haas R, Mailath G, Watzek G. Influence of platelet-rich plasma on osseous healing of dental implants: A histologic and histomorphometric study in minipigs. Int J Oral Maxillofac Implants 18: 15-22, 2003.

    下載圖示
    2007-06-29公開
    QR CODE