| 研究生: |
莊子函 Chuang, Tzu-Han |
|---|---|
| 論文名稱: |
結合層層自組裝與模板法合成可控制奈米結構無機氧化物材料 Synthesis of Controllable Oxide Nanostructures via Layer-by-Layer Assembly and Template-Directed Approaches |
| 指導教授: |
詹正雄
Jan, Jeng-Shiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 131 |
| 中文關鍵詞: | 層層自組裝 、多孔性二氧化矽 、聚胺基酸 、金奈米粒子 、中空管 、觸媒降解 、二級結構 |
| 外文關鍵詞: | layer-by-layer, porous silica, polypeptide, gold nanoparticles, hollow tube, secondary structure |
| 相關次數: | 點閱:128 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇論文裡,我們製備出擁有奈米結構的有機/無機組合式複合材料並可合成出具有中空管狀的無機氧化物,二氧化矽和二氧化鈦,藉由模板法和不同的合成策略進行生物仿生的礦化作用,控制實驗的條件來改變材料形狀、尺寸大小、孔隙度和孔洞結構。我們利用合成材料聚胺基酸poly-L-lysine和poly-L-glutamic acid的物理性質、化學特性、合成途徑層層自組裝的過程和實驗溶液的變化,藉由這些因素來控制並影響形狀和尺寸大小,而聚胺基酸的二級結構是決定孔洞結構和孔隙度的重要因素之一,聚胺基酸高分子間的交互作用、不同的溶液狀態下都可能會觸發二級結構的生成。另外,結合金奈米粒子和多孔性二氧化矽形成的複合材料,可在相同的製程下獲得,同樣藉由控制實驗的條件和聚胺基酸的物理化學特性不僅影響二氧化矽材料同時也影響金奈米粒子生成的還原性、顆粒大小和分散性,達到高可控制性的複合材料。最後針對金/二氧化矽材料和二氧化鈦相關的觸媒降解應用,證明可藉由材料控制性來達到高觸媒活性。我們提供一種多用途性的技術合成奈米級的無機氧化物材料,材料都能表現出獨特的良好特性,並且能應用在許多相關領域裡,例如:藥物傳輸、包覆材料和奈米裝置等等。
Here we report the preparation of hollow nanostructured organic/inorganic composite tube and inorganic oxide materials that are silica and titanium with controllable shape, size, porosity, and pore architecture using a combination of different template-directed synthesis strategies, layer-by-layer assembly and followed by biomimetic mineralization. The size and shape of asynthesized materials can be controlled by polypeptide chemistry, template-directed approaches and solution conditions. In addition, the porosity and pore architecture of as-synthesized materials can be controlled by polypeptide chemistry, polypeptide secondary structures, the association of different polypeptides, and solution conditions. In the same procedure, we also proposed to use polypeptide macromolecular assemblies as mediating agents and templates for porous silica mineralization and directed growth of gold nanoparticle. The reported strategies provide simple and versatile techniques to synthesize oxide based nanomaterials at benign conditions. The results show that these materials have unique properties of relevance to numerous applications including drug delivery, nanodevices and encapsulation.
文獻參考
[1] R. Roy, S. Komarneni, D. M. Roy. Mater. Res. Soc. Symp. Proc. 1984, 32, 347.
[2] S. Iijima, Nature 1991, 354, 56.
[3] H. Nakamura, Y. Matsui, J. Am. Chem. Soc. 1995, 117, 2651.
[4] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir 1998, 14, 3160.
[5] L. A. Estroff, A. D. Hamilton, Chem. Mat. 2001, 13, 3227.
[6] N. Poulsen, M. Sumper, N. Kroger, Proc. Natl. Acad. Sci. USA 2003, 100, 12075.
[7] J. Aizenberg, J. C. Weaver, M. S. Thanawala, V. C. Sundar, D. E. Morse, P. Fratzl, Science 2005, 309, 275.
[8] C. Sanchez, H. Arribart, M. M. G. Guille, Nat. Mater. 2005, 4, 277.
[9] M. Jensen, R. Keding, T. Hoche, Y. Z. Yue, J. Am. Chem. Soc. 2009, 131, 2717.
[10] J. N. Cha, K. Shimizu, Y. Zhou, S. C. Christiansen, B. F. Chmelka, G. D. Stucky, D. E. Morse, Proc. Natl. Acad. Sci. USA 1999, 96, 361.
[11] T. E. Creighton, Proteins: Structures and Molecular Principles; W. H. Freeman:New York, 1993.
[12] C. Branden, J. Tooze, Introduction to Protein Structure; Garland: New York, 1999.
[13] N. Poulsen, M. Sumper, N. Kroger, Proc. Natl. Acad. Sci. USA 2003, 100, 12075.
[14] N. Kroeger, R. Deutzmann, M. Sumper, Science 1999, 286, 1129.
[15] N. Kroeger, R. Deutzmann, C. Bergsdorf, M. Sumper, Proc. Natl. Acad. Sci. USA 2000, 97, 14133.
[16] N. Kroger, S. Lorenz, E. Brunner, M. Sumper, Science 2002, 298, 584.
[17] R. R. Naik, P. W. Whitlock, F. Rodriguez, L. L. Brott, D. D. Glawe, S. J. Clarson, M. O. Stone, Chem. Commun. 2003, 238.
[18] M. Reches, E. Gazit, Science 2003, 300, 625.
[19] M. Sumper, Science 2002, 295, 2430.
[20] K. J. C. van Bommel, A. Friggeri, S. Shinkai, Angew. Chem. Int. Ed. 2003, 42, 980.
[21] M. S. Wong, J. N. Cha, K. S. Choi, T. J. Deming, G. D. Stucky, Nano Lett. 2002, 2, 583.
[22] C. M. Zaremba, G. D. Stucky, Curr. Opin. Solid State Mater. Sci. 1996, 1, 425.
[23] J. S. Jan, D. F. Shantz, Adv. Mater. 2007, 19, 2951.
[24] J. S. Jan, S. J. Lee, C. S. Carr, D. F. Shantz, Chem. Mat. 2005, 17, 4310.
[25] H. Menzel, S. Horstmann, P. Behrens, B. Barnreuther, I. Krueger, M. Jahns, Chem. Commun. 2003, 2994.
[26] L. E. Euliss, S. G. Grancharov, S. O'Brien, T. J. Deming, G. D. Stucky, C. B. Murray, G. A. Held, Nano Lett. 2003, 3, 1489.
[27] K. M. Hawkins, S. S. S. Wang, D. M. Ford, D. F. Shantz, J. Am. Chem. Soc. 2004, 126, 9112.
[28] J. S. Jan, D. F. Shantz, Chem. Commun. 2005, 2137.
[29] J. N. Cha, G. D. Stucky, D. E. Morse, T. J. Deming, Nature 2000, 403, 289.
[30] H. Susi, Timashef.Sn, L. Stevevs, J. Biological Chem. 1967, 242, 5460.
[31] M. Muller, R. Buchet, U. P. Fringeli, J. PHys. Chem. 1996, 100, 10910.
[32] J. C. Wu, Y. L. Wang, C. C. Chen, Y. C. Chang, Chem. Mat. 2008, 20, 6148.
[33] C. T. Yang, Y. L. Wang, S. Yu, Y. C. I. Chang, Biomacromolecules 2009, 10, 58. [34] S. V. Patwardhan, R. Maheshwari, N. Mukherjee, K. L. Kiick, S. J. Clarson, Biomacromolecules 2006, 7, 491.
[35] S. V. Patwardhan, N. Mukherjee, M. Steinitz-Kannan, S. J. Clarson, Chem. Commun. 2003, 1122.
[36] F. Rodriguez, D. D. Glawe, R. R. Naik, K. P. Hallinan, M. O. Stone, Biomacromolecules 2004, 5, 261.
[37] D. D. Glawe, F. Rodriguez, M. O. Stone, R. R. Naik, Langmuir 2005, 21, 717.
[38] C. R. Martin, Science 1994, 266, 1961.
[39] C. R. Martin, Acc. Chem. Res. 1995, 28, 61
[40] C. R. Martin, Chem. Mat. 1996, 8, 1739.
[41] Th. Nemetschek, U. Hofmann, Natureforsch. 1953, 8b, 410.
[42] Th. Nemetschek, U. Hofmann, Natureforsch. 1954, 9b, 166.
[43] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv. Mater. 1999, 11, 1307
[44] D. Li, Y. N. Xia, Adv. Mater. 2004, 16, 1151.
[45] C. Bae, H. Yoo, S. Kim, K. Lee, J. Kim, M. A. Sung, H. Shin, Chem. Mat. 2008, 20, 756.
[46] M. Nishizawa, V. P. Menon, C. R. Martin, Science 1995, 268, 700.
[47] P. Hoyer, Langmuir 1996, 12, 1411.
[48] S. O. Obare, N. R. Jana, C. J. MurpHy, Nano Lett. 2001, 1, 601.
[49] K. S. Mayya, D. I. Gittins, A. M. Dibaj, F. Caruso, Nano Lett. 2001, 1, 727.
[50] R. Fan, Y. Y. Wu, D. Y. Li, M. Yue, A. Majumdar, P. D. Yang, J. Am. Chem. Soc. 2003, 125, 5254.
[51] L. Li, Y. W. Yang, G. H. Li, L. D. Zhang, Small 2006, 2, 548.
[52] P. X. Gao, C. S. Lao, Y. Ding, Z. L. Wang, Adv. Funct. Mater. 2006, 16, 53.
[53] J. M. Macak, H. Tsuchiya, A. Ghicov, P. Schmuki, Electrochem. Commun. 2005, 7, 1133.
[54] S. Baral, P. Schoen, Chem. Mater. 1993, 5, 145.
[55] M. Adachi, T. Harada, M. Harada, Langmuir 1999, 15, 7097.
[56] H. J. Shin, D. K. Jeong, J. G. Lee, M. M. Sung, J. Y. Kim, Adv. Mater. 2004, 16, 1197.
[57] J. Hwang, B. D. Min, J. S. Lee, K. Keem, K. Cho, M. Y. Sung, M. S. Lee, S. Kim, Adv. Mater. 2004, 16, 422.
[58] G. Decher, Science 1997, 277, 1232.
[59] F. Caruso, Aust. J. Chem. 2001, 54, 349.
[60] J. L. Lutkenhaus, K. D. Hrabak, K. McEnnis, P. T. Hammond, J. Am. Chem. Soc. 2005, 127, 17228.
[61] J. B. Schlenoff, S. T. Dubas, T. Farhat, Langmuir 2000, 16, 9968.
[62] J. Cho, K. Char, J. D. Hong, K. B. Lee, Adv. Mater. 2001, 13, 1086.
[63] A. P. Ngankam, P. R. Van Tassel, Langmuir 2005, 21, 5865.
[64] E. Donath, G. B. Sukhorukov, F. Caruso, S. A. Davis, H. Mohwald, Angew. Chem. Int. Edit. 1998, 37, 2202.
[65] A. A. Mamedov, N. A. Kotov, Langmuir 2000, 16, 5530.
[66] J. K. Ferri, W. F. Dong, R. Miller, J. PHys. Chem. B 2005, 110, 14764.
[67] D. G. Shchukin, K. Kohler, H. Mohvald, G. B. Sukhorukov, Angew. Chem. Int. Edit. 2005, 44, 3310.
[68] J. J. Yuan, O. O. Mykhaylyk, A. J. Ryan, S. P. Armes, J. Am. Chem. Soc. 2007, 129, 1717.
[69] M. M. Tomczak, D. D. Glawe, L. F. Drummy, C. G. Lawrence, M. O. Stone, C. C. Perry, D. J. Pochan, T. J. Deming, R. R. Naik, J. Am. Chem. Soc. 2005, 127, 12577.
[70] J. E. Meegan, A. Aggeli, N. Boden, R. Brydson, A. P. Brown, L. Carrick, A. R. Brough, A. Hussain, R. J. Ansell, Adv. Funct. Mater. 2004, 14, 31.
[71] S. Kessel, A. Thomas, H. G. Borner, Angew. Chem. Int. Edit. 2007, 46, 9023.
[72] R. K. Iler, John Wiley, New York,1979, 896.
[73] K. D. Kim, H. T. Kim, J. Sol-Gel Sci. Technol. 2002, 25, 183.
[74] C. Sanchez, F. Ribot, B. Lebeau, J. Mater. Chem. 1999, 9, 35.
[75] J. W. Mc Bain, Rutledge and sons, London, 1932, 5.
[76] M. Estermann, L. B. McCusker, C. Baerlocher, A. Merrouche, H. Kessler, Nature 1991, 352, 320.
[77] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359, 710.
[78] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc. 1992, 114, 10934.
[79] P. Selvam, S. K. Bhatia, C. G. Sonwane, Ind. Eng. Chem. Res. 2001, 40, 3237.
[80] D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 1998, 279, 548.
[81] A. Arcadi, Chem. Rev. 2008, 109, 3266.
[82] G. C. Bond, D. T. Thompson, Cat. Rev. - Sci. Eng. 1999, 41, 319.
[83] J. Turkevich, P. C. Stevenson and J. Hillier, Discuss. Faraday Soc. 1951, 11, 55.
[84] J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot and A. Plech, J. Phys. Chem. B, 2006, 111, 15700.
[85] B. Rodriguez-Gonzalez, P. Mulvaney and L. M. Liz-Marza’ n, Z. Phys. Chem. 2007, 221, 415.
[86] L. F. Chen, J. C. Hu, R. Richards, J. Am. Chem. Soc. 2009, 131, 914.
[87] J. Lee, J. C. Park, H. Song, Adv. Mater. 2008, 20, 1523.
[88] J. Lee, J. C. Park, J. U. Bang, H. Song, Chem. Mater. 2008, 20, 5839.
[89] U. I. Gaya, A. H. Abdullah, J. Photochem. Photobiol. C-Photochem. Rev. 2008, 9, 1.
[90] A. Ghicov, P. Schmuki, Chem. Commun. 2009, 2791.
[91] J. H. Jung, H. Kobayashi, K. J. C. van Bommel, S. Shinkai, T. Shimizu, Chem. Mater. 2002, 14, 1445.
[92] A. Fujishima, K. Honda, Nature 1972, 238, 37.
[93] K. N. P. Kumar, J. Kumar, K. Keizer, J. Am. Ceram. Soc. 1994, 77, 1396.
[94] T. Kasuga, M. Hiramatsu, M. Hirano, A. Hoson, K. Oyamada, J. Mater. Res. 1997, 12, 607.
[95] M. R. Hoffmann, S. T. Martin, W. Y. Choi, D. W. Bahnemann, Chem. Rev. 1995, 95, 69.
[96] S. Brunauer, L. S. Deming, W. S. Deming and E. T. Teller, J. Am. Chem. Soc. 1940, 62, 1723.
[97] G. Ertl, H. Knozinger, J. Weutkamp, Handb. Heterogen. Catal. 1997, 3, 1508.
[98] E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 1951, 73, 373.
[99] P. Binger, M. J. Doyle, J. McMeeking, C. Kruger, Y. H. Tsay, J. Organomet. Chem. 1977, 135, 405.
[100] W. H. Daly, D. Poche, Tetrahedron Lett. 1988, 29, 5859.
[101] F. Boulmedais, M. Bozonnet, P. Schwinte, J. C. Voegel, P. Schaaf, Langmuir 2003, 19, 9873.
[102] M. J. Xu, G. M. Gratson, E. B. Duoss, R. F. ShepHerd, J. A. Lewis, Soft Matter 2006, 2, 205.
[103] F. Boulmedais, P. Schwinte, C. Gergely, J. C. Voegel, P. Schaaf, Langmuir 2002, 18, 4523.
[104] S. Wang, K. Qian, X. Z. Bi, W. X. Huang, J. Phys. Chem. C 2009, 113, 6505.
[105] J. Das, M. A. Aziz, H. Yang, J. Am. Chem. Soc. 2006, 128, 16022.
[106] N. Kroger, M. B. Dickerson, G. Ahmad, Y. Cai, M. S. Haluska, K. H. Sandhage, N. Poulsen, V. C. Sheppard, Angew. Chem. Int. Edit. 2006, 45, 7239.
[107] A. Yu, G. Q. M. Lu, J. Drennan, I. R. Gentle, Adv. Funct. Mater. 2007, 17, 2600.
[108] K. S. Mayya, D. I. Gittins, F. Caruso, Chem. Mat. 2001, 13, 3833.
[109] S. Baskaran, L. Song, J. Liu, Y. L. Chen, G. L. Graff, J. Am. Ceram. Soc. 1998, 81, 401.
[110] A. Hanprasopwattana, T. Rieker, A. G. Sault, A. K. Datye, Catal. Lett. 1997, 45, 165.
[111] I. Moriguchi, H. Maeda, Y. Teraoka, S. Kagawa, J. Am. Chem. Soc. 1995, 117, 1139.