簡易檢索 / 詳目顯示

研究生: 羅力友
Ro, Li-Yu
論文名稱: 背散射電子繞射分析技術: 殘留應變與差排密度之量測
Electron Backscatter Diffraction (EBSD) Analysis Techniques: Residual Strain and Dislocation Density Measurement
指導教授: 郭瑞昭
Kuo, Jui-Chao
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 91
中文關鍵詞: 背散射電子繞射菊池線圖晶軸殘留應變差排密度晶體取向
外文關鍵詞: EBSD, Kikuchi pattern, zone axis, residual strain, dislocation density, crystal orientation
相關次數: 點閱:101下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為國內首次以EBSD分析技術殘留應變與差排密度及建立二維分佈圖形。研究主軸分為兩部份:第一,利用數位影像相關法(DIC, digital imagine correlation)及EBSD技術獲得二維殘留應變分佈圖。第二,結合臨界應力法(critical stress analysis)以及EBSD獲得二維差排密度分佈。
    以單晶矽基板氮化鋁鍍膜,單晶鋁及單晶銅為分析材料,進行壓印實驗,之後分析壓印後所產生的二維殘留應變與差排密度分佈。單晶矽基板氮化鋁鍍膜產生殘留應變值最大伸張應變(tensile strain)約為0.02;單晶鋁壓印10g負重產生殘留應變最大值約為0.012,累積的總差排密度最大值約 m-2 。單晶銅奈米壓印5g負重產生殘留應變最大值約0.041,累積的總差排密度最大值約 m-2。單晶銅以10g奈米壓印產生殘留應變最大值約0.087,累積的總差排密度最大值約 m-2。本研究已經成功以2D殘留應變及差排密度運用於分析壓印附近的應變及差排密度之分佈。

    It’s the first time in Taiwan using EBSD (electron back-scattering diffraction) techniques to analyze two dimensional distributions of residual strain and dislocation density. This thesis has two parts: firstly, using DIC (digital image correlation) and EBSD to measure two dimensional distribution of residual strain; secondarily, combining critical stress analysis and EBSD technique to calculate two dimensional distribution of dislocation density.
    Single aluminum, single copper and alumni nitride thin film on single silicon substance were chosen as experimental materials and performed using indentation testing. The maximum of residual tensile strain in the vicinity of the indentation tip is 0.02 for AlN/Si. The maximum value of residual strain and total dislocation density for 10g-indented single Al are 0.012 and m-2, respectively. In the case of single Cu using 5g nano-indentation, the maximum residual and total dislocation density are 0.041 and m-2, respectively. The maximum residual and total dislocation density are 0.087 and m-2 for single Cu loaded by 10g nano-indentation, respectively.

    摘要......................................................I Abstract.................................................II 總目錄...................................................III 圖目錄....................................................VI 表目錄....................................................XI 第一章 前言.................................................1 1.1 研究動機與背景..........................................1 1.2 研究目的................................................2 第二章 文獻回顧與相關理論.....................................4 2.1 背向電子散射繞射文獻回顧與原理............................4 2.2 數位影像偵測殘留應變文獻回顧與計算原理.....................8 2.2.1 殘留應變文獻回顧.......................................8 2.2.2 以EBSD量測變形矩陣之原理...............................9 2.3 差排密度文獻回顧與計算原理...............................15 2.3.1 差排密度文獻回顧......................................15 2.3.2 以EBSD量測差排張量...................................17 第三章 實驗材料與步驟......................................26 3.1 試片準備...............................................26 3.1.1 單晶鋁試片製備.......................................26 3.1.2 奈米壓印單晶銅試片製備................................28 3.2 實驗步驟...............................................30 3.2.1 殘留應變分佈分析......................................30 3.2.2 差排密度分佈分析......................................36 第四章 實驗結果............................................38 4.1 殘留應變分析...........................................38 4.1.1 單晶鋁應變張量分佈....................................38 4.1.2 單晶銅應變張量分佈....................................42 4.2 差排密度分析...........................................46 4.2.1 單晶鋁差排密度分析....................................46 4.2.2 單晶銅差排密度分析....................................50 第五章 討論...............................................55 5.1 殘留應變驗證討論........................................55 5.2 探討殘留應變與晶軸位移之關係.............................60 5.2.1 AlN鍍膜殘留應變形態與晶軸位移之關係.....................60 5.2.2 理想應變與晶體取向之關係...............................64 5.3 差排密度計算原理討論....................................69 5.3.1 影像品質對差排密度計算討論.............................69 5.3.2 最小能量法總差排密度分佈討論...........................70 5.4 壓印過程中之異向性討論..................................76 5.4.1 Misorientation分佈與殘留應變張量分佈之關係.............76 5.4.2 Misorientation分佈與差排密度分佈之關係.................77 5.4.3 殘留應變分佈與差排密度分佈之關係........................79 第六章 結論................................................83 附錄A 立方晶體系統異向性普松比值.............................85 參考文獻...................................................88

    1. Qin, S.; Wang, H.,Residual stresses in micro-structures fabricated by the IC-compatible sacrificial layer technique. Mechatronics, 1998, 427-440.
    2. Cao, Z.; Zhang, X., Experiments and theory of thermally-induced stress relaxation in amorphous dielectric films for MEMS and IC applications. Sensors and Actuators, 127, 2006, 221-227.
    3. Angerer, P.; Neubauer, E.; Yu, L.G.; Khor, K.A., Determination of the residual stress depth profile of uniaxial compacted ruthenium powder samples by X-ray diffraction. International Journal of Refractory Metals and Hard Materials. 27, 2009 , 1004-1008.
    4. Kanga, Y.; Qiua, Y.; Leia, Z.; Hub, M., An application of Raman spectroscopy on the measurement of residual stress in porous silicon. Optics and lasers in Engineering, 43, 2005 , 847-855.
    5. Nie, M.; Huang, Q.A.; Li W., Measurement of residual stress in multilayered thin films by a full-field optical method43. Sensors and Actuators, 126, 2006 , 93-97.
    6. Bestmann, M.; Prior, D. J.; Grasemann, B., Characterisation of deformation and flow mechanics around porphyroclasts in a calcite marble ultramylonite by means of EBSD analysis. Tectonophysics, 413, 2006, 185-200.
    7. Heidelbach, F.; Wenk, H. R.; Chen, S. R.; Pospiech, J.; Wright, S. I., Orientation and misorientation characteristics of annealed, rolled and recrystallized copper. Materials Science and Engineering, 215, 1996, 39-49.
    8. Laird, C., Compatibility stresses in fatigued bicrystals: Dependence on misorientation and small plastic deformations. Acta Materialia , 45, 1997, 5129-5143.
    9. Randle, V.; Owen, G., Mechanisms of grain boundary engineering. Acta Materialia, 54, 2006, 1777-1783.
    10. Zaefferer, S.; Kuo, J. C.; Winning, M.; Raabe, D., On the influence of the grain boundary misorientation on the plastic deformation of aluminum bicrystals. Acta Materialia, 51, 2003, 4719-4753.
    11. Zhu, G. H.; Mao, W. M.; YU, Y. N., Nucleation of Cold Rolled FeCo Alloy during Annealing and Its Influence on the Formation of Recrystallization Texture. Journal of Materials Science & Technology, 16, 2000, 543-545.

    12. Nye, J.F., Some Geometrical relations in dislocated crystals. Acta Metallurgica, 1, 1953, 153-164.
    13. Wilkinson, A.J.; Graham Meaden; Dingley, D.J., High-resolution elastic strain measurement from electron backscatter diffraction patterns:New levels of sensitivity. Ultramicroscopy, 106, 2006, 307-313.
    14. Prior, D. J.; Boyle, A.; Brenker, F.; Cheadle, M. C.; Day, A., The Application of Electron Backscatter Diffraction and Orientation Contrast Imaging in the SEM to Textural Problems in Rocks. American Mineralogist, 84, 1999, 1741-1759.
    15. Driver, J.H.; Juul Jensen, D.; Hansen, N., Large strain deformation structures in aluminium crystals with rolling texture orientations. Acta Metallurgica, 42, 1994, 3105-3114.
    16. Pantleon, W.; He, W.; Johansson, T.P.; Gundlach, C., Orientation inhomogeneities within individual grains in cold-rolled aluminium resolved by electron backscatter diffraction. Materials Science and Engineering, 483, 2008, 668-671.
    17. Alam, M. N.; Blackman, M., High angle Kikuchi patterns. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 221, 1954, 224-242.
    18. Venables, J. A.; Harland, C. J., Electron backscattering patterns–anewtechnique for obtaining crystallographic information in the scanning electron microscope. Philosophical Magazine, 27, 1973, 1193-1200.
    19. Dingley, D. J., On-Line Determination of Crystal Orientation and Texture Determination in an SEM. Royal Microscopical Society - RMS Proceedings 19, 74-75.
    20. Krieger-Lassen, N. C., Automated Determination of Crystal Orientations from ElectronBackscattering Patterns. Danmarks Tekniske Universitet Lyngby, 1994.
    21. Schwartz, A. J.; Kumar, M.; Adams, B. L., Electron Backscatter Diffraction in Material Science. Springer: 2000. New York.
    22. Dingley, D. J., Progressive Steps in the Development of Electron Backscatter Diffraction and Orientation Imaging Microscopy. Journal of Microscopy, 213, 2004, 214-224.
    23. Humphreys, F. J., Phase Identification in a Scanning Electron Microscope Using Backscattered Electron Kikuchi Patterns. Journal of Research of the National Institute of Standards and Technology, 101, 1996, 301-308.
    24. Randle,V.; Engler,O., Introduction to Texture Analysis Macrotexture, Microtexture and Orientation Mapping. CRC, 2nd, 2010. U.S.
    25. Quested, P. N.; J., H. P.; M., M., Observations of Deformation and Fracture Heterogeneities in a Nickel-Base Superalloy Using Electron Back Scattering Patterns. Acta Metallurgica, 36, 1988, 2743-2752.
    26. Wilkinson, A. J.; Dingley, D. J., Quantitative Deformation Studies Using Electron Back Scatter Patterns. Acta Metallurgica, 39, 1991, 3047-3055.
    27. Dingley, D. J.; Randle, V., Microtexture Determination by Electron Back-Scatter Diffraction. Journal of Materials Science, 27, 1992, 4545-4566.
    28. Baba-Kishi, K. Z.; Dingley, D. J., Application of Backscatter Kikuchi Diffraction in the Scanning Electron Microscope to the Study of NiS2. Journal of Applied Crystallography, 22, 1989, 189-200.
    29. Wilkinson, A.J., Measurement of elastic strains and small lattice rotations using electron back scatter diffraction. Ultramicroscopy, 62, 1996, 237-247
    30. 王翰弘. 以電子繞射量測殘留應變與其應用. 國立成功大學, 2007
    31. Wilkinson, A.J.; Graham Meaden; Dingley, D.J., Mapping strains at the nanoscale using electron backscatter diffraction. Superlattice and microstructures, 45, 2009, 285-294
    32. Peters, W. H.; Ranson, W. F.; Sutton, M. A.; Chu, T. C.; Anderson, J., Applications of Digital Image Correlation Methods to Rigid Body Mechanics. Optical Engineering, 22, 1983, 738-742.
    33. Tung, S.H.; Shih, M.H.; Kuo, J.C., Digital image correlation for elastic deformation and anisotropic plastic deformation. Optics and Lasers in Engineering, 48, 2010, 636-641.
    34. Grytten, F.; Daiyan, H.; Polanco-Loria, M.; Dumoulin, S., Use of digital image correlation to measure large-strain tensile properties of ductile thermoplastics. Polymer Testing, 28, 2009, 653-660.
    35. Arsenlis, A.; Parks, D.M., Crystallographic aspects of geometrically necessary and statistically-stored dislocation density. Acta material, 47, 1999, 1597-1611.
    36. Sun, S.; Adams, B.L.; Shet, C.; Saigal, S.; King, W.,Mesoscale investigation of the deformation field of an aluminum bicrystal. Scripta Materialia, 39, 1998, 501-508.
    37. El-Dasher, B.S.; Adams, B.L.; Rollett, A.D., Viewpoint: experimental recovery of geometrically necessary dislocation density in polycrystals. Scripta Materialia, 48, 2003, 141-145.
    38. Pantleon, W., Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction. Scripta Materialia, 58, 2008, 994-997.
    39. Field, D.P.; Trivedi, P.B.; Wright, S.I.; Kumar, M., Analysis of local orientation gradients in deformed single crystals. Ultramicroscopy, 103, 2005, 33-39.
    40. Kysar, J.W.; Gan Y.X.; Morse, T.L.; Chen X.; Jones, M.E., High strain gradient plasticity associated with wedge indentation into face-centered cubic single crystals Geometrically necessary dislocation densies., Journal of the Mechanics and Physics of Solids, 55, 2007, 1554-1573.
    41. Reed-Hill, R.E.; Reza Abbaschian, Physical metallurgy principles. PWS PUBLISHING COMPANY,1991, 3rd, 136-139.Boston
    42. Dingley, D. J.; Randle, V., Microtexture Determination by Electron Back-ScatterDiffraction. Journal of Materials Science, 27, 1992, 4545-4566.
    43. Jeffrey, G. A.; Parry, G. S., Crystal Structure of Aluminum Nitride. The Journal of Chemical Physics, 23, 1955, 406-416.
    44. Streetman, B. G.; Banerjee, S., Solid state electronic devices. 5th ed.; Baker & Taylor Books: 2000.
    45. Wang, Y.; Raabe, D.; Kluber, C.; Roters, F., Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals. Acta Materialia, 52, 2004, 2229-2238.
    46. Mase, G.T.; Mase, G.E., Continuum Mechanics for Engineers. CRC: 1999. U.S.
    47. Wojciechowski, K.W; Poisson’s ratio of anisotropic systems. Computation Methods In Science And Technology, 11, 2005, 73-79.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE