| 研究生: |
周凱雯 Chao, Hoi-Man |
|---|---|
| 論文名稱: |
新型態中緯度移行電離層擾動與火山爆發影響 The new type of mid-latitude traveling ionospheric disturbances and effects driven by the volcanic eruption |
| 指導教授: |
林建宏
Lin, Chien-Hing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2023 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 電離層全電子含量 、電離層移行擾動 、東加海底火山爆發 、火山電離層擾動 |
| 外文關鍵詞: | Traveling Ionospheric Disturbances(TIDs), Tonga volcano eruption, Volcano-Ionosphere Interactions |
| 相關次數: | 點閱:48 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
移行電離層擾動(Traveling Ionospheric Disturbances, TIDs),是電離層中一種常見的擾動現象,在電離層上空每日都可能會有常規性或非常規性的移行電離層擾動。本研究使用2020年美國全球衛星導航系統(Global Navigation Satellite System data, GNSS)地面接收機網觀測之移行電離層擾動之變化情形。地面GNSS接收機網觀測的電離層全電子含量(Total Electron Content, TEC)資料經過帶通濾波器處理後,進一步將其對應的經緯度位置繪製於美洲上空的二維全電子含量圖(2D-TEC Map),並採用目測的方式檢視美國東部上空每日的電離層圖變化情形。發現美國東部基本上空每日都有日常擾動,這些資料統計可以幫助了解常規的移型電離層擾動之季節與時空變化,當特殊極端事件發生時,如西元2022年1月15日東加島國海底火山爆發事件產生全球電離層擾動,其擾動經過北美上產生的電離層擾動與常規電離層擾動即有明顯的差異。位於南太平洋的島國東加,距離主要島嶼東加塔布島西北側約65公里處的海底火山,即東加的洪加湯加-洪加哈派(Hunga Tonga-Hunga Ha'apai)在當地時間2022年1月15日下午5時14分(UTC+13:00),發生海底火山大爆發並產生全球大氣與電離層擾動,利用GNSS2D-TEC Map觀測到美國東部電離層上方有火山爆發造成的擾動波特徵,顯示此次震波威力足以傳達至半個全球外的美洲並在全球繞行。本論文重點之一為研究此事件於美洲所發生的各種常規與火山爆發驅動的電離層波動擾動之特徵。藉由比對常規與極端事件之擾動差異釐清該日於美國上空電離層之擾動中常規與事件之TIDs交互作用情形。
Traveling Ionospheric Disturbances(TIDs) is a common seen phenomenon in the ionosphere showing daily, monthly and seasonal dependences. This thesis studies the climatology of TIDs for year 2020 over North America using ground-based GNSS receiver networks in the United States. Results show that there are regularly appearance of TIDs after sunrise with their wavefront aligned with the day/night terminator. The driver of the TIDs with wavefront aligned along terminator might be related to the gradient of ionosphere between day and night. Understanding the wavefront and propagation characters of the regularly seen TIDs is important, because it helps to distinguish them from TIDs driven by special events. For example, on 15 January 2022Tonga volcano eruption causes large influences to the global ionosphere. It produces the atmospheric lamb wave propagating around earth back and forth for four times. In this thesis, total electron content (TEC) derived from observations of ground-based Global Navigation Satellite System(GNSS) receiver networks are utilized to construct the two dimensional TEC (filtered TEC) maps (2D-TEC maps). The maps provide characters of the TIDs, including wavefront, amplitude, phase velocity andoccurrence time, for comparisons of the climatological TIDs and the volcano driven TIDs. The comparison show how the volcano driven TIDs differ from the climatology TIDs for better understanding of how ionosphere responses to the extreme surface events.
Astafyeva, E., Maletckii, B., Mikesell,T. D., Munaibari, E., Ravanelli, M.,Coisson, P., et al. (2022). The 15 January 2022 Hunga Tonga eruption history as inferred from ionospheric observations. Geophysical Research Letters, 49, e2022GL098827. https://doi.org/10.1029/2022GL098827
E.L.Afaimovivh,I.K.Edemskiy,A.S.Leonovich,L.A.Leonoivch,S.V.Voeykov,and Y.V.Yasyukevich(2009),MHD nature of night-time TIDSS excited by the solar terminator, Geophys. Res. Lett.,36,L25106,:10.1029/2009GL039803
J. Sanz Subirana, J.M. Juan Zornoza, M. Hernández-Pajares GNSS Data Processing, Vol. I: Fundamentals and Algorithms (ESA TM-23/1, May 2013)
Kiwamu Nishida, Naoki Kobayashi and Yoshio Fukao,(2013)Background Lamb waves in the Earth’s atmosphere, Geophys. J. Int. (2014) 196, 312–316, doi: 10.1093/gji/ggt413
Lin, J.-T., Rajesh, P. K., Lin, C. C. H., Chou, M.-Y., Liu, J.-Y., Yue, J., et al. (2022). Rapid conjugate appearance of the giant ionospheric Lamb wave signatures in the northern hemisphere after Hunga-Tonga volcano eruptions. Geophysical Research Letters, 49, e2022GL098222. https://doi.org/10.1029/2022GL098222
Lin, C. C. H., M.-H. Shen, M.-Y. Chou,C.-H. Chen, J. Yue, P.-C. Chen, and M. Matsumura (2017), Concentric traveling ionospheric disturbances triggered by the launch of a SpaceX Falcon 9 rocket, Geophys. Res. Lett., 44,doi:10.1002/2017GL074192.
Lin, C. H., C.-H. Chen, M. Matsumura,J.-T. Lin, and Y. Kakinami (2017),Observation and simulation of theionosphere disturbance waves triggered by rocket exhausts, J. Geophys. Res. Space Physics, 122, doi:10.1002/2017JA023951.
Liu, L., Morton, Y. J., Cheng,P.-H., Amores, A., Wright, C. J., & Hoffmann, L. (2023). Concentric traveling ionospheric disturbances (CTIDS) triggered by the 2022 Tonga volcanic eruption. Journal of Geophysical Research: Space Physics,128, e2022JA030656.https://doi. org/10.1029/2022JA030656
Liu, H.-L., Wang, W., Huba, J. D.,Lauritzen, P. H., & Vitt, F. (2023).Atmospheric and ionospheric responses to Hunga-Tonga volcano eruption simulated by WACCM-X. Geophysical Research Letters, 50, e2023GL103682. https://doi.org/10.1029/2023GL103682
Mariano Fagre, Bruno S. Zossi, Jaroslav Chum, Ana G. Elias(2020) Simulated high frequency ray paths considering traveling ionospheric disturbances, SN Applied Sciences (2020) 2:615 | https://doi.org/10.1007/s42452-020-2438-4
Micheal C.Kelley(2009), The Earth’s Ionosphere; Plasma Physics and Electrodynamics,2ndedition,Academic Press
Miyoshi and Shinagawa(2023), Upward propagation of gravity waves
and ionospheric perturbations triggered by the 2022 Hunga‑Tonga volcanic eruption, Earth, Planets and Space (2023) 75:68, https://doi.org/10.1186/s40623-023-01827-2
Ravanelli, M., Astafyeva, E., Munaibari,E., Rolland, L., & Mikesell, T. D. (2023).Ocean-ionosphere disturbances due to the 15 January 2022 Hunga-Tonga Hunga-Ha'apai eruption. Geophysical Research Letters, 50, e2022GL101465.https://doi.org/10.1029/2022GL101465
Rocken, C., Kuo, Y. -H., Schreiner, W. S., Hunt, D., Sokolovskiy, S., & McCormick, C. (2000). COSMIC System Description. Terrestrial, Atmospheric And Oceanic Sciences, 11, 21-52. doi:10.3319/TAO.2000.11.1.21(COSMIC)
Yuichi Otsuka , Atsuki Shinbori, Takuya Tsugawa and Michi Nishioka(2021) Solar activity dependence of medium-scale traveling ionospheric disturbances using GPS receivers in Japan, Otsuka et al. Earth, Planets and Space (2021) 73:22. https://doi.org/10.1186/s40623-020-01353-5
Zhang.S-R, Erickson, P. J.,Gasque,L. C., Aa,E., Rideout. W., Vierinen, J., et al. (2021)Electrified Postsunrise Ionospheric Perturbations at Millstone Hill, Geophysical Research Letters,48,e2021GL095151. https://doi.org/10.1029/2021GL095151
周育霆,「低緯度地區中緯度移行電離層擾動研究」,國立成功大學,碩士論文(2017)
周敏揚,「觀測與模擬研究電離層與大氣波動耦合」,國立成功大學,博士論文(2018)
吳宜軒,「利用GPS觀測探討磁期間電離層電子濃度變化」,國立成功大學,碩士論文,(2011)
曾清凉,儲慶美,GPS衛星測量原理與應用(第二版),國立成功大學衛星資訊研究中心(1999)
林承毅,林長青,陳鶴欽,李旭志,原子鐘輔助衛星定位儀校正作業系統能量之研究,內政部國土測繪中心自行研究報告(2012)
李承叡,「利用全球導航衛星定位系統三維斷層掃描研究日全蝕對電離層之擾動」,國立成功大學,碩究生論文,(2018)
陳柏成,「西元2012年Mount Tongariro 火山噴發對電離層擾動之研究」,國立成功大學,碩士論文(2014)
鄭又禎,「2019年哈吉貝颱風觸發之移行電離層擾動」,國立成功大學,碩士論文,(2020)
程品軒,「研究低緯度之移行電離層擾動與開發自動判別演算法」,國立成功大學,碩士論文(2020)
練川平,「數值模式研究地殼與低層大氣電流對電離層電子密度影響」,國立成功大學,碩士論文(2015)
張瑜珊,「結合不同高緯電位模式之太空天氣資料同化系統於2015年聖派翠光節磁暴的現報和預報比較」,國立成功大學,碩士論文(2020)
鍾鼎國,「日出前及日落後電離層高度變化之研究」國立中央大學,博士論文(2006)