簡易檢索 / 詳目顯示

研究生: 董亦軒
Tung, Yi-Hsuan
論文名稱: N型共軛高分子分選半導體奈米碳管應用於具有光誘導閘控能力之記憶體元件
Semiconducting Carbon Nanotubes Sorting with N-type Conjugated Polymer for Memory Devices with Light-Induced Gating Capability
指導教授: 林彥丞
Lin, Yan-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 113
語文別: 英文
論文頁數: 109
中文關鍵詞: 共軛高分子場效電晶體光記憶體單壁奈米碳管碳管分選
外文關鍵詞: Conjugated polymer, Field effect transistor, Phototransistor memory, Single-walled carbon nanotube, Sorting SWNT
相關次數: 點閱:31下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於與傳統的矽基電晶體相比,具有較低的製造溫度和成本,有機場效電晶體(FETs)引起了越來越多的關注,藉由其功能化引發之記憶體行為開啟電晶體式記憶體之應用範疇。本研究專注於利用理論及算以及聚集度的分析,以預測共軛高分子分選奈米碳管行為,以及製備成FET的性能表現,特別是其在非揮發性記憶體應用中的表現,包括光記憶體。研究探索了選擇性地以共軛高分子包覆單壁碳奈米碳管(SWNTs),以增強其電荷捕獲能力,最終提升光電晶體的性能。研究詳細表徵了使用不同供體:噻吩(T)、噻噻吩(TT)、硒吩(Se)、雙氟噻吩(2TF)和雙噻吩(2T)的萘二醯亞胺N型共軛高分子材料,包括高分子的化學結構和SWNT的分選過程。結果顯示2T的純度特徵值和產量分別達到0.362和18.27%,而由T、TT及Se所構成之系統則因為其與碳管之不匹配構象而無法達成有效的分選;2TF則具有適中之表現能力,但仍遠不如2T之分選效果,推測是因為2T的主鏈最為柔軟,提供有效的聚集能力,從而提升分選碳管的效果。利用形貌表徵、理論計算及光學表徵來研究高分子與SWNTs之間的相互作用。本研究還探討了光響應型FET記憶體元件,實驗結果表明,以SWNT作為主動層和共軛高分子作為光閘設計的FET,不僅形成了優異的電洞遷移率(2.53 cm² V⁻¹ s⁻¹),還增強了電子捕捉能力。2T及SWNT所構成之FET記憶體元件的記憶體開關比和記憶體窗格分別為10⁵ 和 74.4 V,顯示出其卓越的電荷存儲能力。此外,元件展示不同的光抹除過程以及在10,000秒內的長期穩定性,以及從多穩態數據存儲的實驗結果表明,該FET記憶體元件可實現多位元存儲。本研究提出的記憶機制包括電寫入和光抹除過程,展示了數據存儲的基本原理。此研究有助於推動先進的FET和光響應電晶體之記憶體元件的發展,為未來電子應用提供了一條具有潛力的發展方向。

    There has been a growing interest in organic field-effect transistors (FETs) in recent years due to their advantages, such as lower fabrication temperature and cost, compared to traditional silicon-based transistors. Their functionalization-induced memory behavior has expanded the application to the transistor memory field. This study focuses on utilizing theoretical calculations and aggregation analysis to predict the behavior of conjugated polymers sorting single-walled carbon nanotubes (SWNTs) and to evaluate the performance of OFETs, particularly their performance in non-volatile memory applications, including phototransistor memories. The study explores the selective wrapping of SWNTs with conjugated polymers (CPs) to improve charge-trapping capabilities, ultimately enhancing phototransistor performance. The research presents a detailed characterization of the materials of N-type CPs with different donors of thiophene (T), thienothiophene (TT), selenophene (Se), bifluorothiophene (2TF), and bithiophene (2T), including the chemical structures of the polymers, and SWNT sorting processes. The resulting purity and yield of 2T reached high values of 0.362 and 18.27%, respectively. However, the donor units of T, TT, and Se fail to achieve effective sorting due to their mismatched conformations with carbon nanotubes. While 2TF exhibits moderate performance, it is still significantly less effective than 2T in sorting. This is likely because 2T has the most flexible backbone, providing enhanced aggregation ability and thereby improving the sorting efficiency of carbon nanotubes. Morphological characterization, theoretical calculations, and optical characterization were employed to investigate the interactions between polymers and SWNTs. The study also discusses the photonic FET memory device. The experimental results indicate that the design of SWNTs as active layers and CPs as photogates leads to the formation of excellent hole mobility (2.53 cm2 V−1s−1) and promotes the electron trapping capability. The memory ratio and memory window of the 2T FET memory device are 105 and 74.4 V, which represent its remarkable charge storage capabilities. We also demonstrate the different light-erasing processes and the long-term stability of the device within 10,000 seconds. Furthermore, multilevel data storage is presented, indicating that multi-bit storage can be achieved within this FET memory device. The proposed memory mechanism involves electrical writing and photo-erasing processes, revealing the underlying principles of data storage and retrieval. This research contributes to developing advanced FETs and phototransistor memory devices, offering a promising avenue for future electronic applications.

    中文摘要 i ABSTRACT ii 誌謝 iv CONTENT vi LIST OF FIGURES ix LIST OF TABLES xv LIST OF ABBREVIATION. xvi Chapter 1 Introduction 1 1-1 Preface 1 1.2 Structures of Single-Walled Carbon Nanotubes 2 1-3 Electronic and Optical Properties of Single-Walled Carbon Nanotubes 5 1-4-1 Arc Discharge 10 1-4-2 Laser Ablation 11 1-4-3 Chemical Vapor Deposition 12 1-4-3-1 High-Pressure Carbon Monoxide (HiPco) 13 1-4-3-2 Plasma Enhanced Chemical Vaporization Deposition (PD) 14 1-5 Processes of Single-Walled Carbon Nanotubes Sorting 15 1-5-1 Density Gradient Centrifugation (DGU) 15 1-5-2 Gel Chromatography 16 1-5-3 Conjugated Polymer Wrapping 17 1-6 Structure design of Conjugated Polymers 19 1-7 Purity Estimation of s-SWNTs 21 1-8 Organic Field Effect Transistor (OFET) 22 1-9 Phototransistor 26 1-10 Research Objective 28 Chapter 2 Experimental Method 29 2-1 Experimental Details and Procedure 29 2-2 Experimental Chemicals 30 2-3 Experiment Equipment 31 2-3-1 Nuclear Magnetic Resonance (NMR) 31 2-3-2 Atomic Force Microscope (AFM) 31 2-3-3 Gel Permeation Chromatography (GPC) 32 2-3-4 Ultraviolet-Visible Spectroscopy (UV-Vis) 33 2-3-5 Raman Spectroscopy 34 2-3-6 Fourier-transform infrared 35 2-3-7 Semiconductor Parameter Analyzer with a Source Meter Unit (SMU) 36 2-4 General Procedure of Polymerization 37 2-5 Selective Sorting Procedure of s-SWNTs 42 2-6 Molecular Simulation 43 2-7 Fabrication of Photomemory Transistors 44 Chapter 3 Result and Discussion 46 3-1 Carbon Nanotube Sorting and Characterization. 46 3-2 Characterization of s-SWNT/CP Supramolecule Films 50 3-3 Theoretical Calculations 55 3-4 Aggregating Behaviors of CPs 58 3-5 Device Characteristics of the Phototransistor Memory 61 3-6 Long-Term Stability and Switching Endurance of the Phototransistor 72 3-7 Working Mechanism of the Memory Device 76 Chapter 4 Conclusion and Future Work 78 4.1 Conclusion 78 4-2 Future work 79 Reference 82

    (1) Schroeder, V.;Savagatrup, S.;He, M.;Lin, S.;Swager, T. M., Carbon Nanotube Chemical Sensors. Chem. Rev. 2019, 119 (1), 599-663.
    (2) Franklin, A. D.;Hersam, M. C.;Wong, H. S. P., Carbon nanotube transistors: Making electronics from molecules. Science 2022, 378 (6621), 726-732.
    (3) Lee, H. W.;Yoon, Y.;Park, S.;Oh, J. H.;Hong, S.;Liyanage, L. S.;Wang, H.;Morishita, S.;Patil, N.;Park, Y. J.;Park, J. J.;Spakowitz, A.;Galli, G.;Gygi, F.;Wong, P. H. S.;Tok, J. B. H.;Kim, J. M.;Bao, Z., Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. Nat. Commun. 2011, 2 (1), 541.
    (4) Qiu, S.;Wu, K.;Gao, B.;Li, L.;Jin, H.;Li, Q., Solution-Processing of High-Purity Semiconducting Single-Walled Carbon Nanotubes for Electronics Devices. Adv. Mater. 2019, 31 (9), 1800750.
    (5) Wang, J.;Lei, T., Enrichment of high-purity large-diameter semiconducting single-walled carbon nanotubes. Nanoscale 2022, 14 (4), 1096-1106.
    (6) Wei, X.;Li, S.;Wang, W.;Zhang, X.;Zhou, W.;Xie, S.;Liu, H., Recent Advances in Structure Separation of Single-Wall Carbon Nanotubes and Their Application in Optics, Electronics, and Optoelectronics. Adv. Sci. 2022, 9 (14), 2200054.
    (7) Gupta, N.;Gupta, S. M.;Sharma, S. K., Carbon nanotubes: synthesis, properties and engineering applications. Carbon Lett. 2019, 29 (5), 419-447.
    (8) Odom, T. W.;Huang, J.-L.;Kim, P.;Lieber, C. M., Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998, 391 (6662), 62-64.
    (9) Hodge, S. A.;Bayazit, M. K.;Coleman, K. S.;Shaffer, M. S. P., Unweaving the rainbow: a review of the relationship between single-walled carbon nanotube molecular structures and their chemical reactivity. Chem. Soc. Rev. 2012, 41 (12), 4409-4429.
    (10) Baughman, R. H.;Zakhidov, A. A.;de Heer, W. A., Carbon Nanotubes--the Route Toward Applications. Science 2002, 297 (5582), 787-792.
    (11) Dresselhaus, M. S.;Dresselhaus, G.;Saito, R.;Jorio, A., Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409 (2), 47-99.
    (12) Yamashita, S., Nonlinear optics in carbon nanotube, graphene, and related 2D materials. APL Photon. 2018, 4 (3), 034301.
    (13) Abhisha, V. S.;Stephen, R., "Optical Properties of Carbon Nanotubes," in Handbook of Carbon Nanotubes, J. Abraham, S. Thomas, and N. Kalarikkal Eds. Cham: Springer International Publishing, 2022, pp. 131-148.
    (14) Liu, K.;Kato, Y. K.;Maruyama, S., "Optical Spectroscopy of Individual Single-Walled Carbon Nanotubes," in Progress in Nanophotonics 6, T. Yatsui Ed. Cham: Springer International Publishing, 2021, pp. 135-163.
    (15) Piao, Y.;Simpson, J. R.;Streit, J. K.;Ao, G.;Zheng, M.;Fagan, J. A.;Hight Walker, A. R., Intensity Ratio of Resonant Raman Modes for (n,m) Enriched Semiconducting Carbon Nanotubes. ACS Nano 2016, 10 (5), 5252-5259.
    (16) Dai, H., Carbon Nanotubes:  Synthesis, Integration, and Properties. Acc. Chem. Res. 2002, 35 (12), 1035-1044.
    (17) Shah, K. A.;Tali, B. A., Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Mater. Sci. Semicond. Process. 2016, 41, 67-82.
    (18) Rathinavel, S.;Priyadharshini, K.;Panda, D., A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Mater. Sci. Eng.: B 2021, 268, 115095.
    (19) Iijima, S., Helical microtubules of graphitic carbon. Nature 1991, 354 (6348), 56-58.
    (20) Journet, C.;Bernier, P., Production of carbon nanotubes. Appl. Phys. A 1998, 67 (1), 1-9.
    (21) Zhao, J.;Su, Y.;Yang, Z.;Wei, L.;Wang, Y.;Zhang, Y., Arc synthesis of double-walled carbon nanotubes in low pressure air and their superior field emission properties. Carbon 2013, 58 (92-98.
    (22) Thess, A.;Lee, R.;Nikolaev, P.;Dai, H.;Petit, P.;Robert, J.;Xu, C.;Lee, Y. H.;Kim, S. G.;Rinzler, A. G.;Colbert, D. T.;Scuseria, G. E.;Tománek, D.;Fischer, J. E.;Smalley, R. E., Crystalline Ropes of Metallic Carbon Nanotubes. Science 1996, 273 (5274), 483-487.
    (23) Tang, M. S. Y.;Ng, E.-P.;Juan, J. C.;Ooi, C. W.;Ling, T. C.;Woon, K. L.;Show, P. L., Metallic and semiconducting carbon nanotubes separation using an aqueous two-phase separation technique: a review. Nanotechnology 2016, 27 (33), 332002.
    (24) Maser, W. K.;Muñoz, E.;Benito, A. M.;Martı́nez, M. T.;de la Fuente, G. F.;Maniette, Y.;Anglaret, E.;Sauvajol, J. L., Production of high-density single-walled nanotube material by a simple laser-ablation method. Chem. Phys. Let. 1998, 292 (4), 587-593.
    (25) Maser, W. K.;Benito, A. M.;Martı́nez, M. T., Production of carbon nanotubes: the light approach. Carbon 2002, 40 (10), 1685-1695.
    (26) Das, R.;Shahnavaz, Z.;Ali, M. E.;Islam, M. M.;Abd Hamid, S. B., Can We Optimize Arc Discharge and Laser Ablation for Well-Controlled Carbon Nanotube Synthesis? Nanoscale Res. Lett. 2016, 11 (1), 510.
    (27) Walker, P. L., Jr.;Rakszawski, J. F.;Imperial, G. R., Carbon Formation from Carbon Monoxide-Hydrogen Mixtures over Iron Catalysts.I. Properties of Carbon Formed. The J. Phys. Chem. 1959, 63 (2), 133-140.
    (28) Tempel, H.;Joshi, R.;Schneider, J. J., Ink jet printing of ferritin as method for selective catalyst patterning and growth of multiwalled carbon nanotubes. Mater. Chem. Phys. 2010, 121 (1-2), 178-183.
    (29) Pant, M.;Singh, R.;Negi, P.;Tiwari, K.;Singh, Y., A comprehensive review on carbon nano-tube synthesis using chemical vapor deposition. Mater. Today:. Proc. 2021, 46 (11250-11253.
    (30) See, C. H.;Harris, A. T., A Review of Carbon Nanotube Synthesis via Fluidized-Bed Chemical Vapor Deposition. Ind. Eng. Chem. Res. 2007, 46 (4), 997-1012.
    (31) Nikolaev, P.;Bronikowski, M. J.;Bradley, R. K.;Rohmund, F.;Colbert, D. T.;Smith, K. A.;Smalley, R. E., Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Let. 1999, 313 (1), 91-97.
    (32) Xu, Y.;Dervishi, E.;Biris, A. R.;Biris, A. S., Chirality-enriched semiconducting carbon nanotubes synthesized on high surface area MgO-supported catalyst. Mater. Let. 2011, 65 (12), 1878-1881.
    (33) Varshney, D.;Weiner, B. R.;Morell, G., Growth and field emission study of a monolithic carbon nanotube/diamond composite. Carbon 2010, 48 (12), 3353-3358.
    (34) Brown, B.;Parker, C. B.;Stoner, B. R.;Glass, J. T., Growth of vertically aligned bamboo-like carbon nanotubes from ammonia/methane precursors using a platinum catalyst. Carbon 2011, 49 (1), 266-274.
    (35) Dai, H., Carbon nanotubes: opportunities and challenges. Surf. Sci. 2002, 500 (1), 218-241.
    (36) Mao, M.;Bogaerts, A., Investigating the plasma chemistry for the synthesis of carbon nanotubes/nanofibres in an inductively coupled plasma enhanced CVD system: the effect of different gas mixtures. J. Phys. D: Appl. Phys. 2010, 43 (20), 205201.
    (37) Yan, Y.;Miao, J.;Yang, Z.;Xiao, F.-X.;Yang, H. B.;Liu, B.;Yang, Y., Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chem. Soc. Rev. 2015, 44 (10), 3295-3346.
    (38) Janas, D., Towards monochiral carbon nanotubes: a review of progress in the sorting of single-walled carbon nanotubes. Mater. Chem. Front. 2018, 2 (1), 36-63.
    (39) Yahya, I.;Bonaccorso, F.;Clowes, S. K.;Ferrari, A. C.;Silva, S. R. P., Temperature dependent separation of metallic and semiconducting carbon nanotubes using gel agarose chromatography. Carbon 2015, 93 (574-594.
    (40) Chortos, A.;Pochorovski, I.;Lin, P.;Pitner, G.;Yan, X.;Gao, T. Z.;To, J. W. F.;Lei, T.;Will, J. W., III;Wong, H. S. P.;Bao, Z., Universal Selective Dispersion of Semiconducting Carbon Nanotubes from Commercial Sources Using a Supramolecular Polymer. ACS Nano 2017, 11 (6), 5660-5669.
    (41) Imin, P.;Cheng, F.;Adronov, A., Supramolecular complexes of single walled carbon nanotubes with conjugated polymers. Polym. Chem. 2011, 2 (2), 411-416.
    (42) Liang, S.;Zhao, Y.;Adronov, A., Selective and Reversible Noncovalent Functionalization of Single-Walled Carbon Nanotubes by a pH-Responsive Vinylogous Tetrathiafulvalene–Fluorene Copolymer. J. Am. Chem. Soc. 2014, 136 (3), 970-977.
    (43) Seo, J.-W. T.;Yoder, N. L.;Shastry, T. A.;Humes, J. J.;Johns, J. E.;Green, A. A.;Hersam, M. C., Diameter Refinement of Semiconducting Arc Discharge Single-Walled Carbon Nanotubes via Density Gradient Ultracentrifugation. J. Phys. Chem. Let. 2013, 4 (17), 2805-2810.
    (44) Tyler, T. P.;Shastry, T. A.;Leever, B. J.;Hersam, M. C., Narrow Diameter Distributions of Metallic Arc Discharge Single-Walled Carbon Nanotubes via Dual-Iteration Density Gradient Ultracentrifugation. Adv. Mater. 2012, 24 (35), 4765-4768.
    (45) Jang, M.;Kim, S.;Jeong, H.;Ju, S.-Y., Affinity-mediated sorting order reversal of single-walled carbon nanotubes in density gradient ultracentrifugation. Nanotechnology 2016, 27 (41), 41LT01.
    (46) Bonaccorso, F.;Hasan, T.;Tan, P. H.;Sciascia, C.;Privitera, G.;Di Marco, G.;Gucciardi, P. G.;Ferrari, A. C., Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation. J. Phys. Chem. C 2010, 114 (41), 17267-17285.
    (47) Liu, H.;Nishide, D.;Tanaka, T.;Kataura, H., Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2011, 2 (1), 309.
    (48) Nish, A.;Hwang, J.-Y.;Doig, J.;Nicholas, R. J., Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat. Nanotechnol. 2007, 2 (10), 640-646.
    (49) Wang, H.;Bao, Z., Conjugated polymer sorting of semiconducting carbon nanotubes and their electronic applications. Nano Today 2015, 10 (6), 737-758.
    (50) Fong, D.;Adronov, A., Recent developments in the selective dispersion of single-walled carbon nanotubes using conjugated polymers. Chem. Sci. 2017, 8 (11), 7292-7305.
    (51) Wang, H.;Li, Y.;Jiménez-Osés, G.;Liu, P.;Fang, Y.;Zhang, J.;Lai, Y.-C.;Park, S.;Chen, L.;Houk, K. N.;Bao, Z., N-Type Conjugated Polymer-Enabled Selective Dispersion of Semiconducting Carbon Nanotubes for Flexible CMOS-Like Circuits. Adv. Funct. Mater. 2015, 25 (12), 1837-1844.
    (52) Lei, T.;Pochorovski, I.;Bao, Z., Separation of Semiconducting Carbon Nanotubes for Flexible and Stretchable Electronics Using Polymer Removable Method. Acc. Chem. Res. 2017, 50 (4), 1096-1104.
    (53) Talsma, W.;Ye, G.;Liu, Y.;Duim, H.;Dijkstra, S.;Tran, K.;Qu, J.;Song, J.;Chiechi, R. C.;Loi, M. A., Efficient Selective Sorting of Semiconducting Carbon Nanotubes Using Ultra-Narrow-Band-Gap Polymers. ACS Appl. Mater. Interfaces 2022, 14 (33), 38056-38066.
    (54) Ding, J.;Li, Z.;Lefebvre, J.;Cheng, F.;Dubey, G.;Zou, S.;Finnie, P.;Hrdina, A.;Scoles, L.;Lopinski, G. P.;Kingston, C. T.;Simard, B.;Malenfant, P. R. L., Enrichment of large-diameter semiconducting SWNTs by polyfluorene extraction for high network density thin film transistors. Nanoscale 2014, 6 (4), 2328.
    (55) Wang, Y.;Gong, Q.;Miao, Q., Structured and functionalized organic semiconductors for chemical and biological sensors based on organic field effect transistors. Mater. Chem. Front. 2020, 4 (12), 3505-3520.
    (56) Kim, M.;Ryu, S. U.;Park, S. A.;Choi, K.;Kim, T.;Chung, D.;Park, T., Donor–Acceptor-Conjugated Polymer for High-Performance Organic Field-Effect Transistors: A Progress Report. Adv. Funct. Mater. 2020, 30 (20), 1904545.
    (57) Liu, K.;Ouyang, B.;Guo, X.;Guo, Y.;Liu, Y., Advances in flexible organic field-effect transistors and their applications for flexible electronics. npj Flexible Electron. 2022, 6 (1), 1.
    (58) Thomas, S. R.;Pattanasattayavong, P.;Anthopoulos, T. D., Solution-processable metal oxide semiconductors for thin-film transistor applications. Chem. Soc. Rev. 2013, 42 (16), 6910.
    (59) Sui, Y.;Deng, Y.;Du, T.;Shi, Y.;Geng, Y., Design strategies of n-type conjugated polymers for organic thin-film transistors. Mater. Chem. Front. 2019, 3 (10), 1932-1951.
    (60) Chen, H.;Zhang, W.;Li, M.;He, G.;Guo, X., Interface Engineering in Organic Field-Effect Transistors: Principles, Applications, and Perspectives. Chem. Rev. 2020, 120 (5), 2879-2949.
    (61) Van Tho, L.;Baeg, K.-J.;Noh, Y.-Y., Organic nano-floating-gate transistor memory with metal nanoparticles. Nano Converg. 2016, 3 (1), 10.
    (62) Lin, Y.-C.;Yang, W.-C.;Chiang, Y.-C.;Chen, W.-C., Recent Advances in Organic Phototransistors: Nonvolatile Memory, Artificial Synapses, and Photodetectors. Small Sci. 2022, 2 (4), 2100109.
    (63) Zhu, Z.;Guo, Y.;Liu, Y., Application of organic field-effect transistors in memory. Mater. Chem. Front. 2020, 4 (10), 2845-2862.
    (64) Yi, M.;Xie, M.;Shao, Y.;Li, W.;Ling, H.;Xie, L.;Yang, T.;Fan, Q.;Zhu, J.;Huang, W., Light programmable/erasable organic field-effect transistor ambipolar memory devices based on the pentacene/PVK active layer. J. Mater. Chem. C 2015, 3 (20), 5220-5225.
    (65) Chiang, Y.-C.;Hung, C.-C.;Lin, Y.-C.;Chiu, Y.-C.;Isono, T.;Satoh, T.;Chen, W.-C., High-Performance Nonvolatile Organic Photonic Transistor Memory Devices using Conjugated Rod–Coil Materials as a Floating Gate. Adv. Mater. 2020, 32 (36), 2002638.
    (66) Prakoso, S. P.;Chen, M.-N.;Chiu, Y.-C., A brief review on device operations and working mechanisms of organic transistor photomemories. J. Mater. Chem. C 2022, 10 (37), 13462-13482.
    (67) Yang, Y.-F.;Chiang, Y.-C.;Lin, Y.-C.;Li, G.-S.;Hung, C.-C.;Chen, W.-C., Highly Efficient Photo-Induced Recovery Conferred Using Charge-Transfer Supramolecular Electrets in Bistable Photonic Transistor Memory. Adv. Funct. Mater. 2021, 31 (40), 2102174.
    (68) Yang, W.-C.;Ercan, E.;Lin, Y.-C.;Chen, W.-C.;Watanabe, Y.;Nakabayashi, K.;Lin, B.-H.;Lo, C.-T.;Mori, H.;Chen, W.-C., High-Performance Organic Photosynaptic Transistors Using Donor−Acceptor Type and Crosslinked Core−Shell Nanoparticles as a Floating Gate Electret. Adv. Opt. Mater. 2023, 11 (3), 2202110.
    (69) Chiang, Y.-C.;Yang, W.-C.;Hung, C.-C.;Ercan, E.;Chiu, Y.-C.;Lin, Y.-C.;Chen, W.-C., Fully Photoswitchable Phototransistor Memory Comprising Perovskite Quantum Dot-Based Hybrid Nanocomposites as a Photoresponsive Floating Gate. ACS Appl. Mater. Interfaces 2023, 15 (1), 1675-1684.
    (70) Ercan, E.;Lin, Y.-C.;Hsu, L.-C.;Chen, C.-K.;Chen, W.-C., Multilevel Photonic Transistor Memory Devices Based on 1D Electrospun Semiconducting Polymer /Perovskite Composite Nanofibers. Adv. Mater. Technol. 2021, 6 (8), 2100080.
    (71) Matsuda, M.;Lin, C.-Y.;Sung, C.-Y.;Lin, Y.-C.;Chen, W.-C.;Higashihara, T., Unraveling the Effect of Stereoisomerism on Mobility–Stretchability Properties of n-Type Semiconducting Polymers with Biobased Epimers as Conjugation Break Spacers. ACS Appl. Mater. Interfaces 2023, 15 (44), 51492-51506.
    (72) Wang, S.;Li, H.;Zhao, K.;Zhang, L.;Zhang, Q.;Yu, X.;Tian, H.;Han, Y., Increasing the Charge Transport of P(NDI2OD-T2) by Improving the Polarization of the NDI2OD Unit along the Backbone Direction and Preaggregation via H-Bonding. Macromolecules 2022, 55 (7), 2497-2508.
    (73) Wang, Y.;Zhang, Z.;Zheng, R.;Zhang, Y., Calculation method for the dielectric constant of thioglycolic acid grafted modified SBS dielectric elastomer. Arabian J. Chem. 2021, 14 (10), 103361.
    (74) Wang, H.;Hsieh, B.;Jiménez-Osés, G.;Liu, P.;Tassone, C. J.;Diao, Y.;Lei, T.;Houk, K. N.;Bao, Z., Solvent Effects on Polymer Sorting of Carbon Nanotubes with Applications in Printed Electronics. Small 2015, 11 (1), 126-133.
    (75) Li, Z.;Chen, W.;Liu, J.;Jiang, D., Can Linear Conjugated Polymers Form Stable Helical Structures on the Carbon Nanotubes? ACS Appl. Mater. Interfaces 2022, 14 (43), 49189-49198.
    (76) Sun, H., COMPASS:  An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds. J. Phys. Chem. B 1998, 102 (38), 7338-7364.
    (77) Sun, H.;Ren, P.;Fried, J. R., The COMPASS force field: parameterization and validation for phosphazenes. Comput. Theor. Polym. Sci. 1998, 8 (1), 229-246.
    (78) Ewald, P. P., Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 1921, 369 (3), 253-287.
    (79) Lei, T.;Chen, X.;Pitner, G.;Wong, H. S. P.;Bao, Z., Removable and Recyclable Conjugated Polymers for Highly Selective and High-Yield Dispersion and Release of Low-Cost Carbon Nanotubes. J. Am. Chem. Soc. 2016, 138 (3), 802-805.
    (80) Hsu, L.-C.;Isono, T.;Lin, Y.-C.;Kobayashi, S.;Chiang, Y.-C.;Jiang, D.-H.;Hung, C.-C.;Ercan, E.;Yang, W.-C.;Hsieh, H.-C.;Tajima, K.;Satoh, T.;Chen, W.-C., Stretchable OFET Memories: Tuning the Morphology and the Charge-Trapping Ability of Conjugated Block Copolymers through Soft Segment Branching. ACS Appl. Mater. Interfaces 2021, 13 (2), 2932-2943.
    (81) Wedler, S.;Bourdick, A.;Athanasopoulos, S.;Gekle, S.;Panzer, F.;McDowell, C.;Nguyen, T.-Q.;Bazan, G. C.;Köhler, A., What is the role of planarity and torsional freedom for aggregation in a π-conjugated donor–acceptor model oligomer? J. Mater. Chem. C 2020, 8 (14), 4944-4955.
    (82) Tran, D. K.;Robitaille, A.;Hai, I. J.;Lin, C.-C.;Kuzuhara, D.;Koganezawa, T.;Chiu, Y.-C.;Leclerc, M.;Jenekhe, S. A., Unified Understanding of Molecular Weight Dependence of Electron Transport in Naphthalene Diimide-Based n-Type Semiconducting Polymers. Chem. Mater. 2022, 34 (21), 9644-9655.
    (83) Choi, J.;Kim, W.;Kim, D.;Kim, S.;Chae, J.;Choi, S. Q.;Kim, F. S.;Kim, T.-S.;Kim, B. J., Importance of Critical Molecular Weight of Semicrystalline n-Type Polymers for Mechanically Robust, Efficient Electroactive Thin Films. Chem. Mater. 2019, 31 (9), 3163-3173.
    (84) Zhang, Z.;Su, M.;Li, G.;Wang, J.;Zhang, X.;Ho, J. C.;Wang, C.;Wan, D.;Liu, X.;Liao, L., Stable Hysteresis-Free MoS2 Transistors With Low-k/High-k Bilayer Gate Dielectrics. IEEE Electron Device Lett. 2020, 41 (7), 1036-1039.
    (85) Frolova, L. A.;Troshin, P. A.;Susarova, D. K.;Kulikov, A. V.;Sanina, N. A.;Aldoshin, S. M., Photoswitchable organic field-effect transistors and memory elements comprising an interfacial photochromic layer. Chem. Commun. 2015, 51 (28), 6130-6132.
    (86) Frolova, L.;Rezvanova, A.;Lukyanov, B.;Sanina, N.;Troshin, P.;Aldoshin, S., Design of rewritable and read-only non-volatile optical memory elements using photochromic spiropyran-based salts as light-sensitive materials. J. Mater. Chem. C 2015, 3 (44), 11675-11680.
    (87) Frolova, L. A.;Rezvanova, A. A.;Shirinian, V. Z.;Lvov, A. G.;Kulikov, A. V.;Krayushkin, M. M.;Troshin, P. A., OFET-Based Memory Devices Operating via Optically and Electrically Modulated Charge Separation between the Semiconductor and 1,2-bis(Hetaryl)ethene Dielectric Layers. Adv. Electron. Mater. 2016, 2 (3), 1500219.
    (88) Oh, S.;Badgujar, S.;Kim, D. H.;Lee, W.-E.;Khan, N.;Jahandar, M.;Rasool, S.;Song, C. E.;Lee, H. K.;Shin, W. S.;Lee, J.-C.;Moon, S.-J.;Lee, S. K., A thermally and mechanically stable solar cell made of a small-molecule donor and a polymer acceptor. J. Mater. Chem. A 2017, 5 (30), 15923-15931.
    (89) Miranti, R.;Krause, C.;Parisi, J.;Borchert, H., Charge transport through thin films made of colloidal CuInS2 nanocrystals. Mater. Res. Express 2015, 2 (6), 066401.
    (90) Park, S.;Kim, S. J.;Nam, J. H.;Pitner, G.;Lee, T. H.;Ayzner, A. L.;Wang, H.;Fong, S. W.;Vosgueritchian, M.;Park, Y. J.;Brongersma, M. L.;Bao, Z., Significant enhancement of infrared photodetector sensitivity using a semiconducting single-walled carbon nanotube/C60 phototransistor. (in eng), Adv. Mater. 2015, 27 (4), 759-765.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE