| 研究生: |
張肇元 Chang, Chao-Yuan |
|---|---|
| 論文名稱: |
鐵/鋅複合材料製程及性質探討 Investigation of process and properties of Fe/Zn composite |
| 指導教授: |
朱建平
Ju, Chien-Ping 陳瑾惠 Chern Lin, Jiin-Huey |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 鐵鋅複合材料 、可降解性生醫材料 、腐蝕性質 |
| 外文關鍵詞: | Fe/Zn composite, bio-degradable, corrosion |
| 相關次數: | 點閱:168 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金屬具有高強度、高韌性、抗腐蝕能力佳、高可塑性、良好的加工性及高經濟性等優點等,從19世紀開始金屬被使用於生醫領域,主要功能是作為骨科用植入材,幫助骨頭的固定讓患部可以加速癒合。目前常用的金屬生醫材料有不銹鋼、鈷鉻合金、鈦及鈦合金等,然而這些植入材在植入於人體後無法被人體降解,因此當患部痊癒後需要進行二次手術將植入材取出,進行二次手術不僅對患者有一定程度的傷害及風險,也會浪費醫療資源。
可降解性金屬生醫材料能夠在人體內被組織降解,當患部痊癒後植入材也自然消失,因此可以避免二次手術帶來的風險與危害,讓復原能力較差的中老年病患可以避免二次手術,也可以解決植入永久性植入材的患者可能需要長期服用藥物的問題。
本研究使用兩種在人體中無毒性且可降解的金屬:鐵及鋅作為研究材料,期許能夠將此複合材料應用於骨科植入材。目前可降解性金屬所需要的降解速率與真實需求不符,無法得到適中的降解速率。利用冷壓成形並施加不同熱處理的鐵鋅複合材料為主要研究對象,並會與純鐵及純鋅進行比較。評估材料經過不同製程處理後的微結構、腐蝕性質等,分析並歸納出成分、製程與性質之間的關係,期許可以供未來作為可降解性金屬植入材之研究參考。
SUMMARY
In recent years, biodegradable metallic material is a developing research objectives in biomaterial field because the implant made by degradable metallic material can naturally degrade in human body and the patients with poor resilience are able to avoid the second surgery.
In part 1,in order to find the most efficient method to obtain the pure Fe/Zn compound, we use cold press to form the sample and apply different heat treatments of composite materials. Finally, we analysis the composition of the sample to find out what Fe/Zn compound do we get. In part 2, we mix the compound obtained in part 1 and the iron powder well and then form the sample by using cold press to get the Fe/Zn composite. At last, we compare the composition , microstructure, porosity and corrosion rate of the composites under different experiment parameters and Fe/Compound ratio.
When Fe/Zn composites sinter at T1℃ for t4 hours, the amount of the pores in the sample is much low and the compositions of the sample are Fe/Zn compound – Fe4Zn9 and iron. The corrosion rate of the Fe/Zn composite is significantly faster than the pure iron and zinc because the corrosion rate of the Fe/Zn compound is much faster than pure iron and zinc and the appearance of the pores from sintering also fastens the corrosion rate.
1. Beverskog B. , Puigdomenech I., Revised pourbaix diagrams for zinc at 25-300℃, Corrosion Science, Vol. 39, No. 1, p107-114, 1997
2. Bowen P.K., Drelich J., Goldman J., Adv. Mater. 25, 2577–2582 , 2013.
3. Callister W.D., Rethwisch D.G., Materials Science and Engineering: An Introduction, Wiley, 2010.
4. Chen Q., Liu L., Zhang S-M., The potential of Zr-based bulk metallic glasses as biomaterials. Front Mater Sci China 4:34–44, 2010
5. Chen Q., Thouas G.A., Metallic implant biomaterials, Materials Science and Engineering R 87, 1–57, 2015.
6. Fontana G., Greene D., Corrosion Engineering, McGraW-Hill, 1978
7. Guttmann M., Diffusive phase transformation in hot dip galvanizing, Materials Science Forum, 155-156:527-548, 1994
8. Guo S., Meng Q., Cheng X., Zhao X., Microstructural evolution and mechanical behavior of metastable β-type Ti–30Nb–1Mo–4Sn alloy with low modulus and high strength, Progress in Natural Science: Materials International 25, 414–418, 2015.
9. Hermawan H., Purnama A., Dube D., Couet J., Mantovani D., Acta Biomaterialia 6, 1852–1860, 2010.
10. Habibovic P., Barrère F., Blitterswijk C., Groot K., Layrolle P., Biomimetic hydroxyapatite coating on metal implants, J Am Ceram Soc 83:517–522, 2002
11. Hermawan H., Biodegradable Metals From Concepts to Applications, Springer, 2012
12. Hermawan H., Mantovani D., Degradable metallic biomaterials: the concept, current developments and future directions. Minerva Biotecnol 21:207–216, 2009
13. Hirschhorn S., Mcbeath A., Dustoor R., Porous Titanium Surgical Implant Materials, Biomedical Materials Research Symposium, 1:49-67, 1971
14. Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zincexternal link disclaimer, Washington, DC: National Academy Press, 2001
15. John C., Biocompatibility of dental casting alloys: a review. J Pros Dent 83:223–234, 2000
16. Johnson W., Bulk amorphous metal—an emerging engineering material. J Min Met Mat Soc 54:40–43, 2002
17. Lahann J., Klee D., Thelen H., Bienert H., Vorwerk D., Hocker H., Improvement of haemocompatibility of metallic stents by polymer coating. J Mater Sci Mater Med 10:443–448, 1999
18. Li H., Rao B., Rong J., Li Y., Ke K., Effect of Pores on Corrosion Characteristics of Porous NiTi Alloy in Simulated Body Fluid, Materials Science and Engineering A, 363:356-359, 2003
19. Park B., Lakes S., Biomaterials: An Introduction, Springer, New York, 2007.
20. Peuster M., Wohlsein P., Brugmann M., Ehlerding M., Seidler K., Fink C., Brauer H., Fischer A., Hausdorf G., Heart 86, 563–569,2001.
21. Peuster M., Hesse C., Schloo T., Fink C., Beerbaum P., Schnakenburg C., Biomaterials 27, 4955–4962, 2006.
22. Razek Equipamentos.Co., Ltd.
23. Schroers J., Kumar G., Hodges T., Chan S., Kyriakides T., Bulk metallic glasses for biomedical applications. J Min Met Mater Soc 61:21–29, 2009
24. S. Rhalmi, M. Odin, M. Assad, M. Tabrizian, C. H. Rivard and L. H. Yahia, Bio-Medical Materials and Engineering, 9:151–162, 1999.
25. Yang K., Ren Y., Nickel-free austenitic stainless steels for medical applications. Sci Technol Adv Mater 11:1–13, 2010
26. 王盈錦、林峰輝、胡孝光、黃玲惠、黃義侑、蔡瑞瑩、闕山璋,生物醫學材料,國立編譯館,2002。
27. 王姿婷,鐵鎂複合材料製成及性質探討,2014。
28. 中國營養學會,中國居民膳食營養素參考攝入量,pp. 179-188。中國輕工業出版社,ISBN 7-5019-2895-9,2002。
29. 宋信文,生醫材料簡介,2003。
30. 高材、林康平、林峰輝、陳家進,生物醫學工程導論,中華民國生物醫學工程學會,2008。
31. 國人膳食營養素參考攝取量, 第六版, 2003。
32. 梁弘逸,熱浸鍍鋅鋼材鐵鋁阻障層形成機構研究,2010。
33. 黃坤祥,粉末冶金學,中華民國粉體及粉末冶金協會,2014。
34. 趙蘭英,生醫材料的研究與發展,工業技術研究院-經資中心生醫組,2002。
校內:2021-08-01公開