簡易檢索 / 詳目顯示

研究生: 林易俊
Lin, Yi-Chun
論文名稱: 應用模糊類神經網路於積體電路之微影製程機台故障診斷分析
指導教授: 王泰裕
Wang, Tai-Yu
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 74
中文關鍵詞: 診斷系統微影製程機台模糊類神經網路積體電路
相關次數: 點閱:96下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   積體電路(Integrated Circuit, IC)產業在經過四十多年來的發展,已經由早期快速的技術改變轉變成為注重製造的技術,雖然產品和製程的進步仍然是產業關注的焦點,但是與該產業相關的生產技術因素卻受到更多的重視,即如何降低生產成本和減短生產週期。在晶圓(wafer)製造的過程中,對製程控制與設備運作都需極高的精確度,只要絲毫的錯誤就會使晶圓失效,所以在製程中,使用了許多種量測方法來確保晶圓和製程的品質。當完成檢測找出缺陷晶圓後,若能在量測站點後面更進一步的加上一個診斷系統,則能更快速地找出問題所在,作故障原因的排除,達到降低成本和減短週期的目的。在整個IC製程中,微影(photolithography)製程無疑是整個IC製造流程的核心,因此本研究以模糊類神經網路(Fuzzy Neural Network, FNN)為方法,希望於晶圓圖案檢測後,建構一套微影製程機台故障診斷系統,當故障現象產生後,將之輸入該系統中,即可判斷出故障的導因,讓設備人員和製程人員能夠更快速的去維修設備或調整製程參數。經由研究結果發現,本故障診斷系統兼具類神經網路與模糊理論的優點,具有相當程度的可更新性、穩健性、正確度及解釋能力。

    none

    目錄 目錄I 圖目錄Ⅳ 表目錄Ⅴ 第一章 緒論1 第一節 研究動機1 第二節 研究目的2 第三節 研究範圍假設與限制2 第四節 研究方法與架構4 第五節 論文大綱6 第二章 文獻探討7 第一節 微影製程7 2.1.1 IC晶圓製程7 2.1.2 微影製程8 2.1.3 微影製程機台的診斷10 第二節 診斷系統的架構11 第三節 模糊理論15 2.3.1 歸屬函數15 2.3.2 模糊集合之運算17 2.3.3 模糊推論與模糊控制18 第四節 模糊類神經網路21 2.4.1 類神經網路21 2.4.2 倒傳遞類神經網路22 2.4.3 模糊類神經網路24 第五節 類神經網路於IC相關製程診斷之應27 第六節 小結28 第三章 以模糊類神經網路為基礎之故障診斷模式29 第一節 系統的架構29 3.1.1 研究範圍29 3.1.2 基本假設32 3.1.3 資料取得32 3.1.4 輸入變數32 3.1.5 輸出變數33 第二節 網路的訓練與測試34 3.2.1 資料模糊化36 3.2.2 模糊推論規則37 3.2.3 學習速率38 3.2.4 模糊類神經網路39 3.2.5 模糊類神經網路之訓練41 3.2.6 網路之誤差程度45 第三節 小結46 第四章 診斷系統的實證研究47 第一節 資料蒐集47 4.1.1 資料來源47 4.1.2 資料型態47 4.1.3 資料處理50 4.1.4 模糊規則庫51 第二節 網路績效53 4.2.1 初始參數的設定53 4.2.2 訓練績效55 4.2.3 測試績效55 第三節 診斷系統56 4.3.1 操作介面56 4.3.2 操作與執行57 第四節 小結59 第五章 結論與建議60 第一節 結論60 第二節 建議62 參考文獻 中文部分63 英文部分64 附錄一67 附錄二69 附錄三73 附錄四74

    中文部分
    莊達人,2000年,VLSI製造技術,高立圖書有限公司
    葉怡成,2001年,類神經網路模式應用與實作(七版),儒林圖書有限公司

    英文部分
    Altug, S., M. Y. Chow, H. J. Trussell. 1999. Fuzzy Inference Systems Implemented on Neural Architectures for Motor Fault Detection and Diagnosis. IEEE Transactions on Industrial Electronics 46(6) 1069-1079.
    Becraft, R., P. L. Lee. 1993. An Integrated Neural Network/Expert System Approach for Fault Diagnosis. Computers & Chemical Engineering 17(10) 1001-1014.
    Bernieri, A., G. Betta, A. Pietrosato, C. Sansone. 1995. A Neural Network Approach to Instrument Fault Detection and Isolation. IEEE Transactions on Instrumentation and Measurement 44(3) 747-750.
    Bhatikar, S. R., R. L. Mahajan. 2002. Artificial Neural-Network-Based Diagnosis of CVD Barrel Reactor. IEEE Transactions on Semiconductor Manufacturing 15(1) 71-78.
    Chen, Y., X. Wang, S. Wang. 1999. A Feedforward Neural Networks (FNN) Used for Semiconductor Wafer Fabrication Parameters Optimization. International Joint Conference on Neural Networks 6 3922-3926.
    Collica, R. S., J. P. Card, W. Martin. 1995. SRAM Bitmap Shape Recognition and Sorting Using Neural Networks. IEEE Transactions on Semiconductor Manufacturing 8(3) 326-332.
    Fan, C. M., R. S. Guo, A. Chen, K. C. Hsu, C. S. Wei. 2001. Data Mining and Fault Diagnosis Based on Wafer Acceptance Test Data and In-Line Manufacturing Data. 2001 IEEE International Semiconductor Manufacturing Symposium 171-174.
    Hunt, J. 1997. Case Based Diagnosis and Repair of Software Faults. Expert Systems 14(1) 15-23.
    Kramer, M. A. 1987. Malfunction Diagnosis Using Quantitative Models with Non-Boolean Reasoning in Expert Systems. AIChE Journal 33(1) 130-140.
    Kim, B., G. T. Park, C. K. Lee. 1999. A Neural Network Plasma Model of Semiconductor Manufacturing Equipment. 1999 IEEE International Fuzzy Systems Conference Proceedings 1 289-291.
    Kim, J. Y., H. J. Jeong, H. C. Kim, C. H. Kim. 2001. Adaptation of Neural Network and Application of Digital Ultrasonic Image Processing for The Pattern Recognition of Defects in Semiconductor. 2001 Int’l Symposium on Electronic Materials and Packaging 274-279.
    Klir, G.. J., B. Yuan. 1995. Fuzzy Sets and Fuzzy Logic׃ Theory and Applications. Prentice Hall, New Jersey.
    Leang, S., C. J. Spanos. 1997. A General Equipment Diagnostic System and Its Application on Photolithographic Sequences. IEEE Transactions on Semiconductor Manufacturing 10(3) 329-343.
    Lin, C. T. 1995. A Neural Fuzzy Control System with Structure and Parameter Learning. Fuzzy Sets and Systems 70(2-3) 183-212.
    Ghandhi, S. K. 1994. VLSI Fabrication Principles׃ Silicon and Gallium Arsenide, Second Edition. John Wiley & Sons, New York.
    Grupe, F. H. 1993. Case-Based Reasoning Applying Past Experience to New Problems. Information Systems Management 10(2) 77-80.
    Gupta, M. M., D. H. Rao. 1994. On The Principle of Fuzzy Neural Networks. Fuzzy Sets and Systems 61 1-18.
    Gupta, M. M. 2001. State of The Art of Neuro-Fuzzy Systems and Their Applications to Intelligent Manufacturing and Fault Diagnosis. IFSA World Congress and 20th NAFIPS International Conference 1 281-285.
    Owrang O., M. M. 1998. Case Discovery in Case-Based Reasoning Systems. Information Systems Management 15(1) 74-78.
    Petti, T. F., J. Klein, P. S. Dhurjati. 1990. Diagnostic Model Processor׃ Using Deep Knowledge for Process Fault Diagnosis. AIChE Journal 36(4) 565-575.
    Sheats, J.R., B. W. Smith. 1998. Microlithography׃ Science and Technology. Marcel Dekker, New York.
    Spanos, C. J., H. F. Guo, A. Miller, J. Levine-Parrill. 1992. Real-Time Statistical Process Control Using Tool Data. IEEE Transactions on Semiconductor Manufacturing 5(4) 308-318.
    Surma, J., B. Braunschweig. 1996. Case-Based Retrieval in Process Engineering׃ Supporting Design by Reusing Flowsheets. Engineering Applications of Artificial Intelligence 9(4) 385-391.
    Wang, L. X., J. M. Mendel. 1992. Generating Fuzzy Rules by Learning from Examples. IEEE Transaction on Systems, Man, and Cybernetics 22(6) 1414-1427.
    Weiner, A. J., D. A. Thurman, C. M. Mitchell. 1995. Applying Case-Based Reasoning to Aid Fault Management in Supervisory Control. IEEE International Conference on Systems 5 4213-4218.
    Xiao, Hong. 2001. Introduction to semiconductor manufacturing technology. Prentice Hall, New Jersey.
    Zant, P. V. 2000. Microchip Fabrication׃ A Practical Guide to Semiconductor Processing, Fourth Edition. McGraw-Hill, New York.
    Zhang, J., J. Morris. 1996. Process Modeling and Fault Diagnosis Using Fuzzy Neural Networks. Fuzzy Sets and Systems 79(1) 127-140.

    下載圖示 校內:立即公開
    校外:2004-06-18公開
    QR CODE