| 研究生: |
蔡和順 Tsai, Ho-Shun |
|---|---|
| 論文名稱: |
減少私人載具使用率的共效益分析-以高雄市為例 The Co-benefit of Reducing the Utilization Rate of Private Vehicles – A Case Study of Kaohsiung City |
| 指導教授: |
林心恬
Lin, Hsin-Tien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 私人載具 、大眾運輸 、共效益 、成本效益分析 、溫室氣體減量 |
| 外文關鍵詞: | private vehicles, public transportation, co-benefits, cost-benefit analysis, greenhouse gas reduction |
| 相關次數: | 點閱:162 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
使用大眾運輸和單車替代私人載具,被視為在日常生中減少溫室氣體排放的手段之一,但使用大眾運輸和單車能帶來的效益不僅如此。在轉乘大眾運輸後,因步行和使用單車而增加的健康效益、民眾日常空氣污染物暴露量的變化,都是使用大眾運輸和單車帶來的影響之一,也是現今政府影響評估時容易忽略的一環。因此此次研究目的為更加全面的審視減少私人載具使用率對環境與人體健康帶來的變化。研究將透過HEATv4.2(Health Economic Assessment tool)模型,評估以單車與大眾運輸替代私人載具後產生的效益或損害,評估一共包含體育活動、空氣污染、交通事故和溫室氣體等四個不同面向,最後將各面向的影響貨幣化以利於相互比較討論。研究情境設定將以單車、大眾運輸(捷運、電動公車)替代私人載具旅次的形式進行,最後各情境下產生的效益將會與當下維持運輸系統所需的投資金額結合,計算出各自的本益比(Benefit-cost ratio),進一步判斷各情境對社會整體的貢獻與收益性。而有趣的是經此次研究發現體育活動與交通事故減量帶來的效益,在大部分的研究情境中皆占據共效益貢獻的主要來源前兩名,兩者加總後的占比從76%到96%不等,而減少空氣污染物與溫室氣體排放所帶來的效益只佔據4%到24%,並非是減少私人載具後主要的效益來源。這樣的結果顯示了未來在交通建設相關的成本效益評估上納入體育活動造成的健康效益,將使評估更加全面且完善。且從成本效益的角度上而言以單車、電動公車和捷運為主的替代方案具有成本效益比例高的優勢,未來以此種導向為主基礎的交通建設與政策皆可獲得良好的收益。
Replacing private vehicles with public transportation and bicycles is seen as one of the means to reduce greenhouse gas emissions in daily life, but the benefits of using public transportation and bicycles go beyond that. The health benefits from walking and cycling and the changes in people's daily exposure to air pollutants both are changes brought about by abandoning the use of private vehicles. These changes are easily overlooked in current government impact assessments. The purpose of this study is to take a more comprehensive look at the changes in the environment and impacts on human health by reducing the utilization rate of private vehicles. The research uses the HEAT v4.2 (Health Economic Assessment tool) model to evaluate the benefits or harms of replacing private vehicles with bicycles and public transportation. The evaluation includes four different aspects: physical activity, air pollution, traffic accidents and greenhouse gases. The impact of each aspect will be monetized for the ease of discussing and comparing the effects of different aspects. The research scenario setting will be carried out with bicycles and public transportation (MRT, electric buses) replacing private vehicle trips. The benefits generated under each scenario will be combined with the investment required to maintain the transportation system to calculate their respective benefit-cost ratios in the final stage of research. Find out which scenario is more economically advantageous for Kaohsiung City through cost-benefit ratio comparison. Study finds that all scenarios (Scenario 1, Scenario 2, Scenario 3) can have a positive impact on Kaohsiung City. The result shows considerable benefits of replacing private vehicles with public transportation or bicycles.
1. 高雄市政府捷運工程局官方網站. Available from: https://mtbu.kcg.gov.tw/.
2. 高雄捷運公司官方網站. Available from: https://www.krtc.com.tw/KLRT/.
3. 中華民國內政部戶政司全球資訊網. Available from: https://www.ris.gov.tw/app/portal/346.
4. 2019年高雄捷運公司年報.
5. 交通部統計查詢網. Available from: https://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100.
6. 97年自用小客車使用狀況調查報告. 2009.
7. 98年機車使用狀況調查. 2010.
8. 99年自用小客車使用狀況調查報告. 2011.
9. 100年機車使用狀況調查. 2012.
10. 高雄捷運企業社會責任報告書. 2012.
11. 101年自用小客車使用狀況調查報告. 2013.
12. 103年自用小客車使用狀況調查報告. 2015.
13. 嘉義市政府-嘉義市公共自行車租賃系統建置及營運管理評估報告. 2015; Available from: https://www.chiayi.gov.tw/News_Content.aspx?n=1284&s=614108.
14. 103年機車使用狀況調查. 2015.
15. 105年自用小客車使用狀況調查報告. 2017.
16. 106年自行車使用狀況調查 (公共版), 交通部, 2018: 中央研究院人文社會科學研究中心調查研究專題中心學術調查研究資料庫.
17. 105年機車使用狀況調查(公共版), 交通部, 2018: 中央研究院人文社會科學研究中心調查研究專題中心學術調查研究資料庫.
18. 臺灣空氣污染物排放量清冊 TEDS 11.0版. 2019; Available from: https://air.epa.gov.tw/EnvTopics/AirQuality_6.aspx.
19. 台北都會區大眾捷運系統環狀線北環段與南環段暨周邊土地開發計畫可行性研究. 2020; Available from: https://www.dorts.gov.taipei/News.aspx?n=4027AA15756300C8&sms=4E98D53D04E37D56.
20. 107年機車使用狀況調查(公共版), 交通部, 2020: 中央研究院人文社會科學研究中心調查研究專題中心學術調查研究資料庫.
21. 107年自用小客車使用狀況調查 (公共版), 交通部, 2020: 中央研究院人文社會科學研究中心調查研究專題中心學術調查研究資料庫.
22. 109年民眾日常使用載具狀況調查, 交通部, 2020.
23. 108年中華民國空氣品質監測報告, 行政院環保署, 2020.
24. 經濟部能源局-電動車輛能源效率標示. 2022; Available from: https://auto.itri.org.tw/energy_efficiency_mark_ecar.aspx.
25. Jenq, J.-Y., et al., 南臺區域整體運輸規劃系列研究(1/2)-旅次特性調查分析, 交通部運輸研究所, 2019.
26. 張朝能, 黃國修, and 張學孔, 公路公共運輸電動客車經營與運作績效調查, 交通部運輸研究所, 2013.
27. 楊伊萍, et al., 陸路運輸業能源消耗及溫室氣體排放推估及評估指標研析, 交通部, 2020, 運輸研究所.
28. Mortality risk valuation in environment, health and transport policies. 2012: OECD Publishing Organisation for Economic Co-operation Development.
29. Ally, J. and T. Pryor, Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems. Journal of Power Sources, 2007. 170(2): p. 401-411.
30. Althoff, T., et al., Large-scale physical activity data reveal worldwide activity inequality. Nature, 2017. 547(7663): p. 336-339.
31. Banar, M. and A. Özdemir, An evaluation of railway passenger transport in Turkey using life cycle assessment and life cycle cost methods. Transportation Research Part D: Transport and Environment, 2015. 41: p. 88-105.
32. Benardos, A., N. Sourouvali, and A. Mavrikos, Measuring and benchmarking the benefits of Athens metro extension using an ex-post cost benefit analysis. Tunnelling and Underground Space Technology, 2021. 111: p. 103859.
33. Bilgili, L., et al., Evaluation of railway versus highway emissions using LCA approach between the two cities of Middle Anatolia. Sustainable Cities and Society, 2019. 49: p. 101635.
34. Bullock, C., F. Brereton, and S. Bailey, The economic contribution of public bike-share to the sustainability and efficient functioning of cities. Sustainable cities and society, 2017. 28: p. 76-87.
35. Carranza, G., et al., Life cycle assessment and economic analysis of the electric motorcycle in the city of Barcelona and the impact on air pollution. Science of the total environment, 2022. 821: p. 153419.
36. Chang, C.-C., Y.-T. Liao, and Y.-W. Chang, Life cycle assessment of alternative energy types–including hydrogen–for public city buses in Taiwan. International Journal of Hydrogen Energy, 2019. 44(33): p. 18472-18482.
37. Chang, Y., et al., The energy use and environmental emissions of high-speed rail transportation in China: A bottom-up modeling. Energy, 2019. 182: p. 1193-1201.
38. Creutzig, F., R. Mühlhoff, and J. Römer, Decarbonizing urban transport in European cities: four cases show possibly high co-benefits. Environmental research letters, 2012. 7(4): p. 044042.
39. De Nazelle, A., O. Bode, and J.P. Orjuela, Comparison of air pollution exposures in active vs. passive travel modes in European cities: A quantitative review. Environment international, 2017. 99: p. 151-160.
40. Del Pero, F., M. Delogu, and M. Pierini, Life Cycle Assessment in the automotive sector: A comparative case study of Internal Combustion Engine (ICE) and electric car. Procedia Structural Integrity, 2018. 12: p. 521-537.
41. Del Pero, F., et al., Life Cycle Assessment of a heavy metro train. Journal of Cleaner Production, 2015. 87: p. 787-799.
42. Dirgahayani, P., Environmental co-benefits of public transportation improvement initiative: the case of Trans-Jogja bus system in Yogyakarta, Indonesia. Journal of Cleaner Production, 2013. 58: p. 74-81.
43. Doll, C.N. and O. Balaban, A methodology for evaluating environmental co-benefits in the transport sector: application to the Delhi metro. Journal of Cleaner Production, 2013. 58: p. 61-73.
44. Ercan, T. and O. Tatari, A hybrid life cycle assessment of public transportation buses with alternative fuel options. The International Journal of Life Cycle Assessment, 2015. 20(9): p. 1213-1231.
45. Finnveden, G., et al., Recent developments in life cycle assessment. Journal of environmental management, 2009. 91(1): p. 1-21.
46. Hao, H., et al., Energy consumption and GHG emissions of GTL fuel by LCA: Results from eight demonstration transit buses in Beijing. Applied Energy, 2010. 87(10): p. 3212-3217.
47. Huangfu, P. and R. Atkinson, Long-term exposure to NO2 and O3 and all-cause and respiratory mortality: A systematic review and meta-analysis. Environment international, 2020. 144: p. 105998.
48. Kaewunruen, S., J. Sresakoolchai, and J. Peng, Life cycle cost, energy and carbon assessments of Beijing-Shanghai high-speed railway. Sustainability, 2020. 12(1): p. 206.
49. Kahlmeier, S., et al., Health economic assessment tool (HEAT) for walking and for cycling. Methods and user guide on physical activity, air pollution, injuries and carbon impact assessments. 2017.
50. Kampa, M. and E. Castanas, Human health effects of air pollution. Environmental pollution, 2008. 151(2): p. 362-367.
51. Kato, H., et al., A life cycle assessment for evaluating environmental impacts of inter-regional high-speed mass transit projects. Journal of the Eastern Asia Society for Transportation Studies, 2005. 6: p. 3211-3224.
52. Kato, H., N. Shibahara, and Y. Watanabe. A Systematic Approach for Evaluating Public Transport Systems through LCA. in th International Conference on EcoBalance, Tsukuba. 2006.
53. Kärnä, P., Carbon footprint of the raw materials of an urban transit bus: case study: diesel, hybrid, electric and converted electric bus. 2012.
54. Korytárová, J. and P. Papežíková, Assessment of large-scale projects based on CBA. Procedia Computer Science, 2015. 64: p. 736-743.
55. Kwan, S.C. and J.H. Hashim, A review on co-benefits of mass public transportation in climate change mitigation. Sustainable Cities and Society, 2016. 22: p. 11-18.
56. Lajunen, A., Energy consumption and cost-benefit analysis of hybrid and electric city buses. Transportation Research Part C: Emerging Technologies, 2014. 38: p. 1-15.
57. Lee, J.-Y., C.-K. Lee, and Y.-Y. Chun, Greenhouse gas emissions from high-speed rail infrastructure construction in Korea. Transportation Research Part D: Transport and Environment, 2020. 87: p. 102514.
58. Li, M. and A. Faghri, Cost–benefit analysis of added cycling facilities. Transportation Research Record, 2014. 2468(1): p. 55-63.
59. Li, Y., et al., Calculation of life-cycle greenhouse gas emissions of urban rail transit systems: A case study of Shanghai Metro. Resources, Conservation and Recycling, 2018. 128: p. 451-457.
60. Ling-Yun, H. and Q. Lu-Yi, Transport demand, harmful emissions, environment and health co-benefits in China. Energy Policy, 2016. 97: p. 267-275.
61. Liu, M., S. Jia, and X. He, A quota-based GHG emissions quantification model for the construction of subway stations in China. Journal of Cleaner Production, 2018. 198: p. 847-858.
62. Mao, R., et al., Global urban subway development, construction material stocks, and embodied carbon emissions. Humanities and Social Sciences Communications, 2021. 8(1): p. 1-11.
63. McKinley, G., et al., Quantification of local and global benefits from air pollution control in Mexico City. 2005, ACS Publications.
64. Miatto, A., et al., The urbanisation-environment conflict: Insights from material stock and productivity of transport infrastructure in Hanoi, Vietnam. Journal of Environmental Management, 2021. 294: p. 113007.
65. Mueller, N., et al., Health impact assessment of active transportation: a systematic review. Preventive medicine, 2015. 76: p. 103-114.
66. Noel, L. and R. McCormack, A cost benefit analysis of a V2G-capable electric school bus compared to a traditional diesel school bus. Applied Energy, 2014. 126: p. 246-255.
67. Pongthanaisawan, J. and C. Sorapipatana, Relationship between level of economic development and motorcycle and car ownerships and their impacts on fuel consumption and greenhouse gas emission in Thailand. Renewable and Sustainable Energy Reviews, 2010. 14(9): p. 2966-2975.
68. Rabl, A. and A. De Nazelle, Benefits of shift from car to active transport. Transport policy, 2012. 19(1): p. 121-131.
69. Rahman, A., Estimation of direct and indirect energy requirements for bus rapid transit (BRT) and light rail transit (LRT). 2009, Carleton University.
70. Rojas-Rueda, D., et al., Replacing car trips by increasing bike and public transport in the greater Barcelona metropolitan area: a health impact assessment study. Environment international, 2012. 49: p. 100-109.
71. Saxe, S. and D. Kasraian, Rethinking environmental LCA life stages for transport infrastructure to facilitate holistic assessment. Journal of Industrial Ecology, 2020. 24(5): p. 1031-1046.
72. Saxe, S., E. Miller, and P. Guthrie, The net greenhouse gas impact of the Sheppard Subway Line. Transportation Research Part D: Transport and Environment, 2017. 51: p. 261-275.
73. Schipper, L., C. Marie-Lilliu, and R. Gorham, Flexing the Link between Transport and Greenhouse Gas Emissions-A Path for the World Bank. 2000.
74. Setiawan, I. System dynamics modeling of Indonesia road transportation energy demand and scenario analysis to achieve national energy policy target. in IOP Conference Series: Materials Science and Engineering. 2019. IOP Publishing.
75. Sheth, A. and D. Sarkar, Life Cycle Cost Analysis for Electric vs Diesel Bus Tansit in an Indian Scenario. Life, 2019. 10(1).
76. Shi, S., et al., A life-cycle assessment of battery electric and internal combustion engine vehicles: A case in Hebei Province, China. Journal of Cleaner Production, 2019. 228: p. 606-618.
77. Shibahara, N., et al., Methodology of information presentation considering the uncertainty of evaluation in the transportation system LCA: Proposal of "Transportation Eco Report". Journal of Life Cycle Assessment, Japan, 2009. 5(2): p. 229-236.
78. Sánchez, J.A.G., et al., Impact of Spanish electricity mix, over the period 2008–2030, on the life cycle energy consumption and GHG emissions of electric, hybrid diesel-electric, fuel cell hybrid and diesel bus of the Madrid transportation system. Energy conversion and management, 2013. 74: p. 332-343.
79. Sælensminde, K., Cost–benefit analyses of walking and cycling track networks taking into account insecurity, health effects and external costs of motorized traffic. Transportation Research Part A: Policy and Practice, 2004. 38(8): p. 593-606.
80. Tobías, A., et al., Health impact assessment of traffic noise in Madrid (Spain). Environmental research, 2015. 137: p. 136-140.
81. Tsai, D.-H., Y.-H. Wu, and C.-C. Chan, Comparisons of commuter's exposure to particulate matters while using different transportation modes. Science of the total environment, 2008. 405(1-3): p. 71-77.
82. Van Wee, B., R. Van Den Brink, and H. Nijland, Environmental impacts of high-speed rail links in cost–benefit analyses: a case study of the Dutch Zuider Zee line. Transportation Research Part D: Transport and Environment, 2003. 8(4): p. 299-314.
83. Wang, G., et al., A cost-benefit analysis of physical activity using bike/pedestrian trails. Health promotion practice, 2005. 6(2): p. 174-179.
84. Woodcock, J., et al., Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. The Lancet, 2009. 374(9705): p. 1930-1943.
85. Xia, T., et al., Traffic-related air pollution and health co-benefits of alternative transport in Adelaide, South Australia. Environment international, 2015. 74: p. 281-290.
86. Yu, W., et al., The cost-effectiveness of bike share expansion to low-income communities in New York city. Journal of Urban Health, 2018. 95(6): p. 888-898.
87. Yue, Y., et al., Life cycle assessment of high speed rail in China. Transportation Research Part D: Transport and Environment, 2015. 41: p. 367-376.
88. Zapata-Diomedi, B., et al., A shift from motorised travel to active transport: What are the potential health gains for an Australian city? PLoS One, 2017. 12(10): p. e0184799.
89. Zhao, E., et al., Emissions life cycle assessment of charging infrastructures for electric buses. Sustainable Energy Technologies and Assessments, 2021. 48: p. 101605.
校內:2027-07-01公開