| 研究生: |
黃培興 Huang, Pei-Hsing |
|---|---|
| 論文名稱: |
結合有限差分與分子動力模擬於飛秒脈衝雷射誘生界面剝離與退火製程之研究 Finite-Difference and Molecular Dynamics Modeling of Femtosecond Pulse Laser Induced Interfacial Spallation and Annealing Processes |
| 指導教授: |
賴新一
Lai, Hsin-Yi |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 179 |
| 中文關鍵詞: | 飛秒脈衝雷射 、分子動力 、界面剝離 、晶格修補 |
| 外文關鍵詞: | femtosecond pulse laser, molecular dynamics, interfacial spallation, lattice mending |
| 相關次數: | 點閱:97 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以分子動力學呈現飛秒脈衝雷射誘生固態界面剝離機制之原子等級分析,並結合有限差分數值模擬飛秒雷射退火過程奈米孔晶格修補之特殊現象。
在論文的第一個部份,首次嘗試以分子動力研究脈衝雷射誘生固態界面之剝離,使用了標準Lennard-Jones 勢能模型並結合無反射動力邊界技術,定性的經由暫態的溫度、壓力與密度軌跡揭示了薄膜界面在飛秒脈衝雷射熔蝕過程之破壞原因與微觀的剝離機制,透過各種不同入射之雷射參數與光吸收係數之模擬,發現脈衝雷射誘生界面破壞的三個主要過程包括:空孔之成核、空孔聯合(coalescence)擴大成裂隙、與最終導致結構之剝離。其次經由動力演化分析之結果顯示,由於「熱」與「壓力波」之鬆弛所誘生結構之膨脹動力與張應力是導致晶界面破壞的兩個重要因素,此外由結構演化之分析也揭示了超高之張應變率在界面的破壞過程扮演了一個重要的角色,並且存在有一臨界之破壞應變率值,當材料之張應變率在此臨界值1.2 × 109 s-1以下時,模擬結果顯示薄膜將趨向於安全且不會有嚴重的剝離發生,最後本文呈現了震波穿透晶界面時詳細的差排演化過程與暫態現象,也詳細雕繪出界面分離過程微觀的原子能量傳輸變化,並中肯的提出製程技術之應用與預防薄膜破壞之建議。
在論文的第二部份,作者提出了一個結合連體與原子模擬的修正方法,並配合量化的差排分析,研究飛秒雷射退火在固態奈米孔晶格修補製程中原子等級之結構變化與暫態現象。分析之結果顯示,奈米孔之結構修補起源於孔表面異質成核之差排,而壓力誘生之多重晶格滑移則使得奈米孔可以快速的完成固態的晶格修補過程,此外也觀察到無柄階梯桿差排在滑移系統中形成了強建的障礙柵,阻止了該滑移系統進一步沿著每個 {111} 滑動面繼續發展,因此導致了局部的應變硬化效應(strain-hardening effect),這個效應十分的有助於描述脈衝雷射誘生表面硬化之機制。最後透過微觀的差排演化以及均方位移曲線(mean-squared displacement, MSD)斜率之變化,可以鑑別出典型的三個晶格修補階段,包括:(I)差排成核的潛伏期、(II)壓力誘生差排之傳播與塑性變形期、以及(III)經由熱擴散之晶格修復與重建期,此三個不同的晶格修補階段,可以進一步的修正並嵌入於各種高等結構材料的雷射退火製程,有助於未來進行複雜的缺陷修復製程之參數設計。
This research presents an atomic-level analysis of spallation mechanism at the solid-state interface excited by femtosecond pulse laser using molecular dynamics (MD) modeling approach, and also investigates the extraordinary processes of nanopore lattice mending by femtosecond laser annealing (FLA) process via a modified numerical method that combined with finite difference (FD).
In the first part of the study, the microscopic insight of dynamical spallation process is meticulously analyzed by means of the transient temperature, pressure and density trajectories. For the first time via a MD modeling trial investigation of the interfacial spallation induced by pulse laser ablation process, the standard form of Lennard-Jones (L-J) model and the non-reflecting dynamic boundary technique are introduced. Based on the results of simulation with various laser incident parameter and absorption coefficient, it is found that laser-induced interfacial damages are typically included three progressive stages, i.e. void nucleation, coalescence leading to crack, and interfacial spallation. The analyses of dynamical evolution indicate that the extraordinary expansive dynamics and tension stress induced by relaxation of thermal and pressure wave are two major factors leading to detrimental defects growth and enlargement. Moreover, as revealed by simulation results, the ultra-high tensile strain rate plays a significant role in dynamic fracture process. A critical damage threshold is always in existence that implies the structure tends to be on the safe side if the strain rate is below the value at 1.2 × 109 s-1. Finally, the detailed evolvements of dislocation and the transient phenomena during the shock wave impinging the grain interface are thoroughly demonstrated. The transportation of regional atomic energy is depicted to collate with phase evolution in the process of interfacial delaminating. Both the cogent suggestion for the processing application and the way to on guard against possible occurrence of interfacial damages are also proposed.
In the second part of the research presents the microscopic dynamic behavior of solid-state nanopore lattice mending process by femtosecond laser annealing using a modified continuum-atomistic modeling approach. The nucleation and propagation of dislocation are also depicted via quantitative dislocation analyses. The results of analyses indicate that the structural mending originated in heterogeneous nucleation of dislocation from the pore surface. The pressure-induced multiple glides on lattice near the pore rapidly and effectively enable the mending operations in solid-state structural transition processes. Moreover, it is also observed that the dislocation of sessile stair-rods can act as a strong barrier to prevent from further glide on slip planes, and thus leading to a local strain-hardening effect. This effect becomes very helpful for the characterization of laser-induced surface hardening mechanism. Finally, three typical lattice mending phases including (i) the incubation of dislocation nucleation, (ii) pressure-induced dislocation propagation and plastic deformation, and (iii) lattice recovery and reconstruction via thermal diffusion, are thoroughly characterized by the evolution of microscopic dislocation and the slope change of atomic mean-squared displacement (MSD) curve. These three proposed stages can be further modified for parameter design to repair delicate defects embedded in various advanced structural materials by laser mending technique in the future.
[1] D. T. Reid, “Laser physics: toward attosecond pulses,” Science 291, 1911(2001)
[2] B. J. Siwick, J. R. Dwyer, R. E. Jordan, R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science 302, 1382(2003)
[3] J. Yang, Y. Zhao, X. Zhua, “Transition between nonthermal and thermal ablation of metallic targets under the strike of high-fluence ultrashort laser pulses,” Appl. Phys. Lett. 88, 094101(2006)
[4] X. Lui, D. Du, G. Mourou, “Laser ablation and micromachining with ultrashort. laser pulses,” IEEE J. Quantum Elect. 33, 1706(1997)
[5] T. Y. Choi, D. J. Hwang, C. P. Grigoropoulos, “Ultrafast laser-induced crystallization of amorphous silicon films,” Opt. Eng. 42, 3383(2003)
[6] H. Sun, M. Han, M. H. Niemz, J. F. Bille, “Femtosecond laser corneal ablation threshold: dependence on tissue depth and laser pulse width,” Lasers Surg. Med. 39, 654(2007)
[7] G. Paltauf, P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev. 103, 487(2003)
[8] A. M. Lindenberg et al., “Atomic-scale visualization of inertial dynamics,” Science 308, 392(2005)
[9] S. K. Sundaram, E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nature Mat. 1, 217(2002)
[10] T. Q. Qiu, C. L. Tien, “Heat transfer mechanisms during short-pulse laser heating of metals,” J. Heat Transfer 115, 835(1993)
[11] D. Perez, L. J. Lewis, “Molecular-dynamics study of ablation of solids under femtosecond laser pulses,” Phys. Rev. B 67, 184102(2003)
[12] L. V. Zhigilei, E. Leveugle, B. J. Garrison, Y. G. Yingling, M. I. Zeifman, “Computer simulations of laser ablation of molecular substrates,” Chem. Rev. 103, 321(2003)
[13] J. P. Callan, Ultrafast Dynamics And Phase Changes In Solids Excited By Femtosecond Laser Pulses, Cambridge: Harvard Univ.; 2000
[14] C. Guo, G. Rodriguez, A. Lobad, A. J. Taylor, “Structural phase transition of aluminum induced by electronic excitation,” Phys. Rev. Lett. 84, 4493(2000)
[15] J. C. Ion, Laser Processing of Engineering Materials: Principles, Procedure and Industrial Application, Amsterdam: Elsevier Butterworth-Heinemann; 2005
[16] H. Hakkinen, U. Landman, “Superheating, melting and annealing of copper surfaces,” Phys. Rev. Lett. 71, 1023(1993)
[17] D. A. Reis, K. J. Gaffney, G. H. Gilmer, B. Torralva, “Ultrafast dynamics of laser-excited solids,” MRS Bull. 31, 601(2006)
[18] K. Lu, Y. Li, “Homogeneous nucleation catastrophe as a kinetic stability limit for superheated crystal,” Phys. Rev. Lett. 80, 4474(1998)
[19] B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, S. I. Anisimov, “Ultrafast thermal melting of laser-excited solids by homogeneous nucleation,” Phys. Rev. B 65, 092103(2002)
[20] C. L. Cleveland, U. Landman, R. N. Barnett, “Molecular dynamics of a laser-annealing experiment,” Phys. Rev. Lett. 49, 790(1982)
[21] J. M. Shieh et al., “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett. 85, 1232(2004)
[22] J. A. Sharp et al., “Deactivation of ultrashallow boron implants in preamorphized silicon after nonmelt laser annealing with multiple scans,” Appl. Phys. Lett. 89, 192105(2006)
[23] Y. Nakata, T. Okada, M. Maeda, “Lithographical laser ablation using femtosecond laser,” Appl. Phys. A 79, 1481(2004)
[24] R. M. Lorenz et al., “Direct Laser Writing on Electrolessly Deposited Thin Metal Films for Applications in Micro- and Nanofluidics,” Langmuir 20, 1833 (2004)
[25] J. Wang, R. L. Weaver, N. R. Sottos, “A parametric study of laser induced thin film spallation,” Exp. Mech. 42, 74(2002)
[26] H. Tamura et al., “Femtosecond-laser-induced spallation in aluminum,” J. Appl. Phys. 89, 3520(2000)
[27] W. H. Zhu, M. Yoshida, “Spall strength of thin aluminum foils at ultra high strain rate,” J. Mater. Sci. Lett. 21, 1569(2002)
[28] H. Y. Lai, P. H. Huang, T. H. Fang, “Microscopic spallation mechanisms induced by a pulse laser at the solid-state interface,” Appl. Phys. A 86, 497(2007)
[29] C. Schafer, H. M. Urbassek L. V. Zhigilei, “Metal ablation by picosecond laser pulses: A hybrid simulation,” Phys. Rev. B 66, 115404(2002)
[30] C. Cheng, X. Xu, “Mechanisms of decomposition of metal during femtosecond laser ablation,” Phys. Rev. B 72, 165415(2005)
[31] S. Amoruso et al., “An analysis of the dependence on photon energy of the process of nanoparticle generation by femtosecond laser ablation in a vacuum,” Nanotechnology 18, 145612(2007)
[32] G. G. Bentini, C. Cohen, A. Desalvo, A. V. Drigo, “Laser annealing of damaged silicon covered with a metal film: test for epitaxial growth from the melt,” Phys. Rev. Lett. 46, 156(1981)
[33] Y. C. Wang, C. L. Pan, J. M. Shieh, B. T. Dai, “Dopant profile engineering by near-infrared femtosecond laser activation,” Appl. Phys. Lett. 88, 131104(2006)
[34] R. T. Young, R. F. Wood, Semiconductors and Semimetals, edited by R. F. Wood, C. W. White, R. T. Young, Orlando: Academic; 1984
[35] Y. Hirayama, M. Obara, “Heat-affected zone and ablation rate of copper ablated with femtosecond laser,” J. Appl. Phys. 97, 064903(2005)
[36] M. I. Kaganov, I. M. Lifshitz, L. V. Tanatarov, “Relaxation between electrons and crystalline lattices,” Sov. Phys. JETP 4, 173(1957)
[37] S. I. Anisimov, B. L. Kapeliovich, T. L. Perel’man, “Electron emission from metal surfaces exposed to ultra-short laser pulses,” Sov. Phys. JETP 39, 375(1974)
[38] T. Q. Qiu, C. L. Tien, “Femtosecond laser heating of multi-layered metals—I. analysis,” Int. J. Heat Mass Transf. 37, 2789(1994)
[39] D. Perez, L.J. Lewis, “Ablation of Solids under Femtosecond Laser Pulses,” Phys. Rev. Lett. 89, 255504(2002)
[40] D. S. Ivanov, L. V. Zhigilei, “Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films,” Phys. Rev. B 68, 064114(2003)
[41] S. Musikant, Optical Materials : An Introduction to Selection and Application, NY: Marcel Dekker; 1985
[42] A. M. Prokhorov, V. I. Konov, I. Ursu, I. N. Mihailescu, Laser Heating of Metals. Bristol: Adam Hilger; 1990
[43] A. H. Guenther, J. K. McIver, “The pulsed laser damage sensitivity of optical thin films, thermal conductivity,” Laser Particle Beams 7, 433(1989)
[44] T. Juhasz, H. E. Elsayed-Ali, X. H. Hu, W. E. Bron, “Time-resolved thermoreflectivity of thin gold films and its dependence on the ambient temperature,” Phys. Rev. B 45, 13819 (1992)
[45] H. E. Elsayed-Ali, T. Jushasz, “Femtosecond time-resolved thermomodulation of thin gold films with different crystal structures,” Phys. Rev. B 47, 13599 (1993)
[46] B. S. Yilbas, “Short-pulse laser heating of gold–chromium layers: thermo-elasto-plastic analysis,” J. Phys D Appl. Phys. 35, 1210(2002)
[47] X. Wang, X. Xu, “Thermoelastic wave induced by pulsed laser heating,” Appl. Phys. A 73, 107(2001)
[48] J. Mozina, M. Dovc, “One-dimensional model of optically induced thermoelastic waves,” Mod. Phys. Lett. B 8, 1791(1994)
[49] F. A. McDonald, “On the precursor in laser-generated ultrasound waveforms in metals,” Appl. Phys. Lett. 56, 230(1990)
[50] P. J. Burnett, D. S. Rickerby, “The scratch adhesion test: an elastic-plastic indentation analysis,” Thin Solid Films 157, 233(1998)
[51] M. Arrigoni et al., “A comparative study of three adhesion tests (EN 582, similar to ASTM C633, LASAT (LASer Adhesion Test), and bulge and blister test) performed on plasma sprayed copper deposited on aluminium 2017 substrates,” J. Adhes. Sci. Technol. 20, 471(2006)
[52] V. Gupta, J. Yuan, D. Martinez, “Calculation, measurement, and control of interface strength in composites,” J. Am. Ceram. Soc. 76, 305(1993)
[53] R. Ikeda et al., “Evaluation of Adhesive Strength of Chemical Vapor Deposition Diamond Films by Laser Spallation,” J. Appl. Phys. 43, 3123(2004)
[54] A. Pecora et al., “Combined solid phase crystallization and excimer laser annealing process for polysilicon thin-film transistors,” Phys. Stat. Sol. (a) 166, 707(1998)
[55] G. Zhang et al., “Femtosecond laser-induced crystallization in amorphous Ge2Sb2Te5 films,” Thin Solid Films 474 , 169(2005)
[56] S. Nolte et al., “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14, 2716(1997)
[57] C. Momma et al., “Short pulse laser ablation of solid targets,” Opt. Commun, 129, 134(1996)
[58] H. N. G. Wadley et al., “Mechanisms, models and methods of vapor deposition,” Prog. Mater. Sci. 46, 329(2001)
[59] J. M. Haile, Molecular Dynamics Simulation: Elementary Methods, Wiley, NY: Wiley; 1992
[60] D. K. Chokappa, S. J. Cook, P. Clancy, “Nonequilibrium simulation method for the study of directed thermal processing,” Phys. Rev. B 39, 10075(1987)
[61] J. E. Lennard-Jones, “The determination of molecular fields. I. From the variation of the viscosity of a gas with temperature,” Proc. Roy. Soc. (Lond.), 106A, 441(1924); “The determination of molecular fields. II. From the equation of state of a gas,”Proc. Roy. Soc. (Lond.), 106A, 443(1924)
[62] L. V. Zhigilei, B. J. Garrison, “Pressure waves in microscopic simulations of laser ablation,” Mater. Res. Soc. Symp. Proc. Proceeding 538 491(1999)
[63] C. Schafer et al., “Pressure-transmitting boundary conditions for molecular-dynamics simulations,” Comput. Mater. Sci. 24, 421(2002)
[64] X. Wang, X. Xu, “Molecular dynamics simulation of heat transfer and phase change during laser material interaction,” J. Heat Transf. Trans. ASME 124, 265(2002)
[65] X. Wang, X. Xu, “Molecular dynamics simulation of thermal and thermomechanical phenomena in picosecond laser material interaction,” Int. J. Heat. Mass Trans. 46, 45(2003)
[66] X.Wang, X. Xu, “Nanoparticles formed in picosecond laser argon crystal interaction,” J. Heat Transf.-Trans. ASME 125, 1147(2003)
[67] P. A. Atanasov et al., “Laser ablation of Ni by ultrashort pulses: molecular dynamics simulation,” Appl. Surf. Sci. 186, 369(2002)
[68] X. Wang, “Thermal and thermomechanical phenomena in picosecond laser copper interaction,” J. Heat Transf. – Trans. ASME 126, 355(2004)
[69] P. Lorazo, L. J. Lewis, M. Meunier1, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73, 134108(2006)
[70] S. L. Jacques, Laser - Tissue Interaction IX, SPIE Proceedings Series, 3254(1998)
[71] J. C. Miller, R. F. Haglund Jr., Laser Ablation and Desorption, Academic Press; 1998
[72] R. E. Wyatt, C. Iung, C. Leforestier, Acc. Chem. Res. 28, 423(1995)
[73] H. Kim, D. Dlott, “Molecular dynamics simulation of nanoscale thermal conduction and vibrational cooling in a crystalline naphthalene cluster,” J. Chem. Phys. 94, 8203(1991)
[74] L. V. Zhigilei, P. B. S. Kodali, B. J. Garrison, “Molecular dynamics model for laser ablation of organic solids,” J. Phys. Chem. B 101, 2028(1997)
[75] V. L. Zhigilei, J. G. Barbara, “Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement irradiation regimes,” J. Appl. Phys. 88, 1281(2000)
[76] E. Leveugle, D. S. Ivanov, L. V. Zhigilei, “Photomechanical spallation of molecular and metal targets: molecular dynamics study,” Appl. Phys. A 79, 1643(2004)
[77] P. H. Huang, H. Y. Lai, “Pressure-induced solid-state lattice mending of nanopores by pulse laser annealing,” Nanotechnology 19, 255701(2008)
[78] H. Y. Lai, P. H. Huang, “Atomistic simulations of spallation dynamics in multilayer thin-film interface excited by femtosecond laser,” Comput. Mater. Sci. 41, 498(2008)
[79] H. Y. Lai, P. H. Huang, “Laser-irradiated thermodynamic behaviors of spallation and recombination at solid-state interface,” Appl. Surf. Sci. 254, 3067(2008)
[80] H. Y. Lai, P. H. Huang, “Molecular dynamics analyses of the femtosecond laser-induced grain boundary spallation,” J. Chinese Soc. Mech. Eng. 28, 577(2007)
[81] P. H. Huang, H. Y. Lai, “Nucleation and propagation of dislocations during nanopore lattice mending by laser annealing: Modified continuum-atomistic modeling,” Phys. Rev. B 77, 125408(2008)
[82] A. D. Mackerell, “Empirical force fields for biological macromolecules: Overview and issues,” J. Comp. Chem. 25, 1584(2004)
[83] S. Chapman, T. G. Cowling, The Mathmatical Theory of Non-Uniform Gases, London: Cambridge University Press; 1961
[84] B. S. Yilbas, “The validity of fourier theory of radiation heating of metals,” Res. Mech. 24, 377(1988)
[85] B. S. Yilbas, “Electron kinetic theory approach for picosecond laser pulse heating,” Num. Heat Transf., Part A, 39, 823(2001)
[86] S. I. Anisimov, B. Rethfeld, “On the theory of ultra-short laser pulse interaction with metal,” Proc. SPIE 3093, 192(1997)
[87] C. Kittel, Introduction to Solid Stare Physics, NY: Wiley; 1996
[88] X. Y. Wang, D. M. Riffe, Y. -S. Lee, M. C. Downer, “Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission,” Phys. Rev. B 50, 8016(1994)
[89] M. Kaveh, N. Wiser, “Electron-electron scattering in conducting materials,” Adv. Phys. 33, 257(1984)
[90] D. E. Gray, American Institute of Physics Handbook, NY: McGraw-Hill; 1972
[91] M. Bonn et al., “Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport,” Phys. Rev. B 61, 1101(2000)
[92] M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, NY: Oxford University Press; 1987
[93] D. C. Rapaport, The Art of Molecular Dynamics Simulation, London: Cambridge University Press; 1997
[94] J. M. Goodfellow et al., Molecular dynamics, Boston: CRC Press; 1990
[95] D. Frenkel, B. Smit, Understanding Molecular Simulation, San Diego: Academic Press; 1996
[96] D. W. Heermann, Computer Simulation Method, Berlin: Springer- Verlag; 1990
[97] W. Eckstein, Computer Simulation of Ion-Solid interaction, Berlin: Springer- Verlag; 1991
[98] M. Meyer et al., Computer Simulation in Material Science, Series E: Applied Sciences Vol. 205, Dordrecht: Kluwer Academic; 1991
[99] R. Smith et al., Atomic & Ion Collisions in Solids and at Surfaces, London: Cambridge University Press; 1997
[100] G. C. Maitland et al., Intermolecular Forces, London: Oxford University Press; 1987
[101] P. L. Huyskens et al., Intermolecular Forces, Berlin: Springer- Verlag; 1991
[102] M. Rigby, E. B. Smith, W. A. Wakeham, G. C. Maitland, The Forces between Molecules, London: Oxford University Press; 1986
[103] 張邦維,胡望宇,舒小琳,嵌入原子方法理論及其在材料科學之應用,湖南,湖南大學出版社,2002
[104] 廖沐真,吳國是,劉洪霖,量子化學從頭計算方法,北京,清華大學出版社,1984
[105] 肖甚修,王崇愚,陳天朗,密度泛函理論的離散變分方法在化學和材料物理學中的應用,北京,科學出版社,1998
[106] S. Erkoc, "Annual Reviews of Computational IX", Singapore: World Scientific Publishing Company; 2001
[107] K. Maekawa, A. Itoh, “Friction and tool wear in nano-scale machining—a molecular dynamics approach,” Wear 188, 115(1995)
[108] L. A. Girifalco, V. G. Weizer, “Application of the Morse potential function to cubic metals,” Phys. Rev. 114, 687(1959)
[109] R. C. Lincoln, K. M. Koliwad, P. B. Chate, “Morse-potential evaluation of second- and third-order elastic constants of some cubic metals,” Phys. Rev. 157, 463 (1967).
[110] M. S. Daw, M. I. Baskes, “Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals,” Phys. Rev. Lett. 50, 1285(1983)
[111] M. S. Daw, M. I. Baskes, “Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals,” Phys. Rev. B 29, 6443(1984)
[112] P. Hohenberg, W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136, B864(1964)
[113] W. Kohn, L. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140, A1133(1965)
[114] M. J. Stott, E. Zaremba, “Quasiatoms: an approach to atoms in nonuniform electronic systems,” Phys. Rev. B 22, 1564(1980)
[115] J. M. Norskov, N. D. Lang, “Effective-medium theory of chemical binding: Application to chemisorption,” Phys. Rev. B 21, 2131(1980)
[116] S .M. Foiles, “Calculation of the surface segregation of Ni-Cu alloys with the use of the embedded-atom method,” Phys. Rev. B 32, 7685(1985)
[117] S. M. Foiles, M . I. Baskes, M. S. Daw, “Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys,” Phys. Rev. B 33, 7983(1986)
[118] R. A. Johnson, “Analytic nearest-neighbor model for fcc metals,” Phys. Rev. B 37,3924(1988)
[119] R. A. Johnson, “Alloy models with the embedded-atom method,” Phys. Rev. B 39, 12554(1989)
[120] C. F. Gerald, P. O. Wheatley, Applied Numerical Analysis, NY: Addison-Wesley; 1997
[121] R. Ansorge, Mathematical Models of Fluiddynamics: Modeling, Theory, Basic Numerical Facts—An Introduction, Berlin: Weiley–VCH; 2002
[122] D. J. Evans et al., “Nonequilibrium molecular dynamics via Gauss's principle of least constraint,” Phys. Rev. A 28, 1016(1983)
[123] D. J. Evans, B. L. Holian, “The Nose–Hoover thermostat,” J. Chem. Phys. 83, 4069(1985)
[124] J. N. Bright, D. J. Evans, D. J. Searles, “New observations regarding deterministic, time-reversible thermostats and Gauss's principle of least constraint,” J. Chem. Phys. 122, 194106(2005)
[125] H. C. Andersen, “Molecular dynamics simulations at constant pressure and/or temperature,” J. Chem. Phys. 72, 2384(1980)
[126] W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Phys. Rev. A 31, 1695(1985)
[127] H. S. Park, E. G. Karpov, W. K. Liu, “Non-reflecting boundary conditions for atomistic, continuum and coupled atomistic/continuum simulations,” Int. J. Numer. Meth. Engng. 64, 237(2005)
[128] Y. B. Zel’dovich, Y. P. Raizer, Physics of Shock Waves and High- Temperature Hydrodynamic Phenomena II, NY: Academic Press, 1967
[129] K. F. Gauss, J. Reine Angew, Math. 4, 232(1829)
[130] C. L. Kelchner, S. J. Plimpton, J. C. Hamilton, “Dislocation nucleation and defect structure during surface indentation,” Phys. Rev. B. 58, 11085(1998)
[131] J. Marian, J. Knap, M. Ortiz, “Nanovoid cavitation by dislocation emission in aluminum,” Phys. Rev. Lett. 93, 165503(2004)
[132] J. A. Zimmerman et al., “Surface step effects on nanoindentation,” Phys. Rev. Lett. 87, 165507(2001)
[133] O. R. de la Fuente et al., “Dislocation emission around nanoindentations on a (001) fcc metal surface studied by scanning tunneling microscopy and atomistic simulations,” Phys. Rev. Lett. 88, 036101(2002)
[134] J. Q. Broughton, G. H. Gilmer, “Molecular dynamics investigation of the crystal–fluid interface. I. Bulk properties,” J. Chem. Phys. 79, 5095(1983)
[135] O. G. Peterson, D. N. Batchelder, R. O. Simmons, “Measurements of X-Ray lattice constant, thermal expansivity, and isothermal compressibility of argon crystals,” Phy. Rev. 150, 703(1966)
[136] J. Q. Broughton, A. Bonissent, F. F. Abraham, “The fcc (111) and (100) crystal–melt interfaces: a comparison by molecular dynamics simulation,” J. Chem. Phys. 74, 4029(1981)
[137] J. Q. Broughton, G. H. Gilmer, “Molecular dynamics investigation of the crystal–fluid interface. IV. free energies of crystal–vapor systems,” J. Chem. Phys. 84, 5741(1986)
[138] J. Q. Broughton, G. H. Gilmer, “Molecular dynamics investigation of the crystal–fluid interface. II. Structures of the fcc (111), (100), and (110) crystal–vapor systems,” J. Chem. Phys. 79, 5105(1983)
[139] J. Q. Broughton, G. H. Gilmer, “Molecular dynamics investigation of the crystal–fluid interface. III. Dynamical properties of fcc crystal–vapor systems,” J. Chem. Phys. 79, 5119(1983)
[140] J. Q. Broughton, G. H. Gilmer, “Molecular dynamics investigation of the crystal–fluid interface. VI. Excess surface free energies of crystal–liquid systems,” J. Chem. Phys. 84, 5759(1986)
[141] K. Ishizaki, I. L. Spain, P. Boisaitis, “Measurements of longitudinal and transverse ultrasonic wave velocities in compressed solidified argon and their relationship to melting theory,” J. Chem. Phys. 63, 1401(1975)
[142] M. Zhou et al., “Finite element simulation of the film spallation process induced by the pulsed laser peening,” J. Appl. Phys. 94, 2968(2003)
[143] H. Goldstein, Classical Mechanics, MA: Addison-Wesley; 1980
[144] V. Gupta, J. Yuan, “Measurement of interface strength by the modified laser spallation technique. II. Applications to metal/ceramic interfaces,” J. Appl. Phys. 74, 2397(1993)
[145] F. Vidal et al., “Spallation induced by ultrashort laser pulses at critical tension,” Phys. Rev. B 70, 1841251(2004)
[146] W. D. Callister, Materials Science and Engineering: An Introduction, NY: Wiley; 1990
[147] A. M. Stoneham, M. M. D. Ramos, R. M. Ribeiro, “The mesoscopic modeling of laser ablation,” Appl. Phys. A, 69, S81(1999)
[148] B. L. Holian, P. S. Lomdahl, “Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations,” Science 280, 2085(1998)
[149] M. A. Meyers et al., “Laser-induced shock compression of monocrystalline copper: characterization and analysis,” Acta Mater. 51, 1211(2003)
[150] K. Kadau et al., “Microscopic view of structural phase transitions induced by shock waves,” Science 296, 1681(2002)
[151] J. -H. Nguyen, N. C. Holmes, “Melting of iron at the physical conditions of the Earth's core,” Nature 427, 339(2004)
[152] M. A. Meyers, “A mechanism for dislocation generation in shock-wave deformation,” Scr. Metall. 12, 21(1978)
[153] W. Z. Kirsten, “Static and dynamic analysis of failure locations and void formation in interconnects due to various migration mechanisms,” Mater. Sci. Semicond. Proces. 6, 85(2003)
[154] C. Weast Robert, CRC Handbook of Chemistry and Physics, Boca Raton: CRC Press; 1988
[155] J. P. Hirth, J. Lothe, Theory of Dislocations, NY; Wiley: 1982.
[156] D. Hull, D. J. Bacon, Introduction to Dislocations, NY; Oxford: 1984
[157] C. Ji, H. S. Park, “The coupled effects of geometry and surface orientation on the mechanical properties of metal nanowires,” Nanotechnology 18, 3057704(2007)
[158] C. Ji, H. S. Park, “Geometric effects on the inelastic deformation of metal nanowires,” Appl. Phys. Lett. 89, 181916(2006)
[159] R. E. Reed-Hill, R. Abbaschian, Physical Metallurgy Principles, Boston; Thomson Pub.: 1992
[160] J. J. De Miguel et al., “The surface morphology of a growing crystal studied by thermal energy atom scattering (TEAS),” Surf. Sci. 189, 1062(1987)
[161] K. Sokolowski-Tinten et al., “Short-pulse-laser-induced optical damage and fracto-emission of amorphous, diamond-like carbon films,” Appl. Phys. Lett. 86, 121911(2005)
[162] A. Rahman, “Correlations in the motion of atoms in liquid argon ,” Phys. Rev. 136, A405(1964)
[163] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equation, NJ: Prentice-Hall Englewood Cliffs; 1971